Count What You Want: Exemplar Identification and
Few-shot Counting of Human Actions in the Wild
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Introduction

Our method focus on counting the number of repetitive actions with user-specified exemplars on

wearable device. This exemplar is provided with audio cues(“one”, “two”, “three”).
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Motivation: Previous methodologies relying heavily on temporal self-similarity, encounter a significant
limitation that they tend to focus solely on the most repetitive temporal patterns. This approach

overlooks less frequent but potentially crucial actions.
Main Contributions:

] A novel strategy for using audio prompts to specify exemplars of what needs to be counted.
A novel counting method that utilizes exemplars, incorporating a distance-preserving loss and an

exemplar-based data synthesis pipeline.
1 An unique dataset with multiple data modalities to develop a practical counting method for real-
world scenarios.

DWC Dataset

We introduce a new action counting dataset

named DWC (Diverse Wearable Counting). This

dataset, comprising 1502 entries from 37 subjects,
spans seven categories — kitchen activities,
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daily routines, instrument-involved activities, and
rehabilitation training. Encompassing 50 distinct
action classes, DWC offers significantly greater
diversity than existing datasets in this area.
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household chores, physical exercises, factory tasks,
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(1) Exemplar Extraction
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(2) Sliding Window
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(5) Density Estimation
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Pretraining with Synthesized Data :
J Fragment extraction with audio cues

Feature Embedding (3) Exemplar-Based Similarity Estimation
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Training Objective :
 Counting Loss

. Augmentation with duration scaling, = Embedding (2) £, = XTLx' L=D—-W
time shifting, amplitude scaling and Distance 1 — ;||
. . . Wi = exp(———537—)
random noise addition. Preserving Loss -
Result
Val Set Test Set Components Combinations
Method MAE RMSE MAE RMSE Pretrain X X X X
Mean 17.18 2191 1480 17.49 Dist. PreservinglLoss X x X v v
Frequency-based 28.10  45.31 28.65 45.39 Constrained Detection X X v v v
RepNet 11.95 17.33 10.82 14.75 Similarity Estimation X v v vV
TransRAC 1451 2040 1297 16.82 MAE 11.30 10.87 10.32 10.05 7.66
Proposed 7.66  12.25 7.47 13.09 RMSE 16.15 15.23 14.96 14.72 12.25
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(a) Predict: 9.7, GT: 8
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(b) Predict: 60.7, GT: 60
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