

Talking Heads: Detecting Humans and Recognizing Their Interactions

Minh Hoai, Andrew Zisserman

Visual Geometry Group, University of Oxford

Objective and Key Idea

- Humans are the primary focus of many TV shows. Detecting them is crucial for understanding TV material.
- We propose an algorithm for detecting people by reasoning about their common configurations in TV shows.
- Observe the similarity of the following upper body configurations:

Detection Procedure

Best configuration: - High unary scores High similarity to a

common configuration

Details

Quantifying a configuration of upper bodies:

- Construct two configuration vectors
- Level-1 configuration: ub1 and ub2 w.r.t. to the union
- Level-2 configuration: The union w.r.t. the reference frame
- Configuration:

Relative locations and scales, e.g., for level-2:

 $\left[\frac{uX - rX}{rW}, \frac{uY - rY}{rH}, \log\left(\frac{uW}{rW}\right), \log\left(\frac{uH}{rH}\right)\right]$

earning Common configurations with Hierarchical Clustering

- Many configurations drawn above have a left-right mirror version
- Total number of learned configurations for 1, 2, 3, and > 3 UBs are: 12, 36, 10, and 2, respectively

Energy and Inference

Energy: $E(\{\mathbf{p}_i\}, \mathbf{u}) = \min_{\theta \in \Theta} E(\{\mathbf{p}_i\}, \mathbf{u} | \theta)$ A configuration model A set of UBs UB union Relative scale and location Relative scale and location b/t b/t UB and the UB union the UB union and the image $E(\{\mathbf{p}_i\}, \mathbf{u} | \theta) = \sum_{i} \alpha_i \mathcal{U}(\mathbf{p}_i) + \sum_{i} \boldsymbol{\beta}_i^T \phi_1(\mathbf{p}_i | \mathbf{u}) + \boldsymbol{\gamma}^T \phi_2(\mathbf{u}) + b$

Parameters of configuration model

Inference is fast:

- The dependency between variables is a tree structure. This enables dynamic programming.
- Generalized Distance transform can be used.
- Much computation can be shared between configuration models

Learning the parameters of configuration models

Assume we have labeled training data $\{\mathbf{I}_i,\mathbf{P}_i,y_i\}$ (image, UBs, configuration model)

Energy function is linear in parameters, rewrite $E_k({f I},{f P})=-({f w}_k^Tarphi_k({f I},{f P})+b_k)$

Max-margin learning:

Parameters to learn Unary potentials + deformation

s.t. $\mathbf{w}_{y_i}^T \varphi_{y_i}(\mathbf{I}_i, \mathbf{P}_i) + b_{y_i} \ge \mathbf{w}_y^T \varphi_y(\mathbf{I}_i, \mathbf{P}) + b_y + 1 - \xi_i$ $\forall i, \mathbf{P}, y : n_y \neq n_{y_i}.$

Experiments

<u>Datasets</u>

- TV Human Interaction (TVHI): 300 video clips from 23 different TV shows - Our Sitcom Dataset: frames extracted from 150 episodes of The Big Bang Theory, Scrubs, Seinfeld, and Frasier

 $0 \quad 1 \quad 2 \quad 3 \geq 4 \quad total$ 0 118 370 79 32 599 TVHI train data 0 100 464 121 29 714 143 448 740 291 32 1654 Combined test data 128 406 726 227 29 1566

Detection Examples

Failure cases

UBC + a Singleton Detector (UBC + S)

Quantitative Evaluation

UBC still outperforms DPM even with tracking enhancement E.g., Precision at 80% recall: DPM: 74.45% UBC: 84.18%

Additional Experiments

Sensitivity Analysis

No. of 1-UB CMs No. of 2-UB CMs	8 24	0	12	20 40	20 64
AP on TVHI data. AP on Com. data.					

Average Precision (AP) as the number of configuration models varies. UBC is not too sensitive to this setting.

<u>Upper-body counting – Confusion matrices</u>

		DPM						UBC+S (ours)						
		0	1	2	3	<u>≥</u> 4				0	1	2	3	Ň
	0	.98	.02	.00	.00	.00			0	.95	.02	.02	.01	0.
al	1	.12	.67	.21	.00	.00		al	1	.05	.87	.07	.00	0.
Actual	2	.11	.31	.41	.14	.02		Actual	2	.04	.21	.67	.07	0.
	3	.04	.10	.29	.36	.21		3	.02	.03	.36	.53	0.	
	<u>≥</u> 4	.00	.22	.21	.34	.22			<u>≥</u> 4	.00	.00	.33	.33	.3
Acc: 52.84%							1			Δα	. 67	7.09)%	

ACC: 67.09%

Human Interaction Recognition

	Handshake	Highfive	Hug	Kiss	Mean
Patron et al. [16]	39.4	45.8	47.0	37.6	42.4
Marin <i>et al.</i> [14]	-	-	-	-	39.2
Yu et al. [29]	-	-	-	-	55.9
Gaidon et al. [9]	-	-	-	-	55.6
DTD [9, 25]	-	-	-	-	53.4
Ours	55.8	60.2	60.8	48.2	56.3

Average Precision on TVHI dataset. We use Dense Trajectory Descriptors

Detection Speed

- On Matlab 2.3 GHz CPU, for a 352x624 image:
- Computing dense scores (using DPM): 945ms
- Additional UBC inference: 610ms for 60 models

More detection examples

Code available: www.robots.ox.ac.uk/~vgg/software/ubc/