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Abstract. Training gaze following models requires a large number of
images with gaze target coordinates annotated by human annotators,
which is a laborious and inherently ambiguous process. We propose the
first semi-supervised method for gaze following by introducing two novel
priors to the task. We obtain the first prior using a large pretrained
Visual Question Answering (VQA) model, where we compute Grad-CAM
heatmaps by ‘prompting’ the VQA model with a gaze following question.
These heatmaps can be noisy and not suited for use in training. The need
to refine these noisy annotations leads us to incorporate a second prior.
We utilize a diffusion model trained on limited human annotations and
modify the reverse sampling process to refine the Grad-CAM heatmaps.
By tuning the diffusion process we achieve a trade-off between the human
annotation prior and the VQA heatmap prior, which retains the useful
VQA prior information while exhibiting similar properties to the training
data distribution. Our method outperforms simple pseudo-annotation
generation baselines on the GazeFollow image dataset. More importantly,
our pseudo-annotation strategy, applied to a widely used supervised gaze
following model (VAT), reduces the annotation need by 50%. Our method
also performs the best on the VideoAttentionTarget dataset. Code is
available at https://github.com/cvlab-stonybrook/GCDR-Gaze.git
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1 Introduction

Human gaze behavior is a vital cue for understanding human cognitive pro-
cesses [74,75] and for applications such as human-machine interaction [1,13,47],
social interaction analysis [5,42], and human intention interpretation [56,60]. In
contrast to eye-tracking glasses which are intrusive and mostly restricted to lab-
oratory environments, the gaze following task [9,14,53] predicts a person’s gaze
target in an image in-the-wild, by predicting a target heatmap from an input
scene image with the person’s head bounding box.

The effectiveness of gaze following methods depends on the quantity and
quality of training data with annotated gaze targets. Annotating gaze targets is

https://github.com/cvlab-stonybrook/GCDR-Gaze.git
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Fig. 1: (a) Gaze following annotation challenges. Annotating gaze is a laborious
task with inherent ambiguities. (b) Pseudo annotations for gaze following. We
generate pseudo annotations by first computing Grad-CAM heatmaps from a pre-
trained VQA model, and then refining the noisy heatmaps with a diffusion model.

a laborious and ambiguous process. For an image and a subject in the image, an
annotator must consider the subject’s head orientation, gaze angle, and follow
the gaze direction to determine where the point of gaze falls on an object or
surface within the image. This can be very challenging, as the subject may be
looking away from the camera, their eyes may be occluded, the image may be
cluttered, and there may be multiple plausible targets, as shown in Fig. 1(a).

It is much more efficient to utilize large quantities of unlabeled data, along
with a limited amount of labeled data, and leverage semi-supervised learning
to improve model performance. Semi-supervised learning has been successful in
tasks such as image recognition and semantic segmentation [2, 27, 30, 67, 73]. In
the context of gaze following, semi-supervised learning can be particularly useful
when developing models for a specific scene, such as a psychology lab conducting
social interaction studies or a supermarket studying customer gaze behaviors,
by requiring only a small fraction of the collected data to be annotated.

This is the first semi-supervised gaze following method, to the best of our
knowledge. Semi-supervised recognition and segmentation methods are typically
not directly applicable to gaze following due to task differences. As gaze following
models predict a target heatmap and require an intact scene image as input,
methods that operate on the predicted multi-class distribution [30,65], perform
strong data augmentation (e.g.,CutOut [15,62]) cannot easily be adapted to gaze
following. Additionally, for semi-supervised methods that use a teacher model
to pseudo-annotate the unlabeled data [33, 34, 67], it is unclear how to design a
gaze following teacher model to generate good quality pseudo-annotations.

To generate high-quality pseudo-gaze labels, our semi-supervised method
combines the power of pre-trained large vision-language (VL) models with an
annotation refinement method. Due to their extensive training sets, VL models
have naturally acquired a wealth of knowledge, including the knowledge for in-
ferring human gaze targets. Specifically, we “prompt” a pre-trained Visual Ques-
tion Answering (VQA) model [44, 52, 78] with an appropriate question to ob-



GCDR-Gazefollowing 3

tain the text description of the gaze target of a subject in the image. We then
use Grad-CAM [6, 57], to ground the VQA model’s description to spatial loca-
tions, referred to as Grad-CAM heatmaps. We want to turn these heatmaps into
pseudo-annotations for training gaze following models.

There are technical challenges in utilizing Grad-CAM heatmaps. First, Grad-
CAM heatmaps do not precisely overlap with the gaze targets because they are
dispersed and noisy, as shown in Fig. 1(b). Second, some Grad-CAM heatmaps
do not provide useful prior knowledge and may highlight incorrect gaze target
locations. Hence, the noisy Grad-CAM heatmaps should be refined into clean
pseudo-annotations, with a trade-off between retaining the Grad-CAM heatmap
information and the pre-trained prior on the annotations available.

We choose a diffusion model as the annotation prior of our refinement method.
We are inspired by the recent use of diffusion models as inverse problem solvers
and image editors that modify the reverse sampling process with a conditional
input [43,48,64]. The goal is to generate an output image that retains the seman-
tics of the degraded input (here the Grad-CAM heatmap), while having similar
properties (i.e., geometry and gaze context) to the training data distribution.

We begin by training a diffusion model to capture the distribution of human-
labeled annotations. The trained diffusion model then generates refined anno-
tations by running the reverse sampling process, initialized from Grad-CAM
heatmaps with an appropriate level of Gaussian noise. The added noise serves
to smooth artifacts and noisy activations in the Grad-CAM heatmaps; the mag-
nitude of the noise dictates how much of the information is preserved.

In summary, we propose the first semi-supervised gaze following method, in
which we introduce two novel priors to the task: (1) Prior knowledge from pre-
trained VQA models for initial annotation generation. (2) A novel diffusion-based
annotation prior to refine the noisy VL annotations into reliable pseudo-labels.

Our method outperforms pseudo-annotation generation baselines on the Gaze-
Follow image dataset [53]. More importantly, our pseudo-annotation strategy,
applied to the widely used VAT model [9], outperforms the fully supervised
model trained with double the amount of annotations when only 5% and 10%
labels are available. Our method also performs the best on the VideoAttention-
Target dataset [9], where we adapt a pre-trained gaze following model to new
videos using only around 100 (2–23%) annotated frames.

2 Prior Work

Gaze Following was first introduced in [53] together with the GazeFollow
dataset and a model composed of two separate pathways for encoding gaze ori-
entation and scene saliency information, also adopted by later work [8,9,14,38].
Chong et al . [8] considered out-of-frame targets and also extended the task to
videos [9], proposing the VideoAttentionTarget dataset and the VAT model.
Later work has improved gaze following models by leveraging monocular depth
estimations [14,25,29,68] and human poses [4,20]. Tu et al . [71] proposed a trans-
former model for gaze following, while [28, 45] added training losses for numer-
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ical coordinate regression and patch-level gaze distribution prediction. Recent
works investigate 3D gaze following [24,26], gaze following for children [66], and
object-aware gaze target prediction [69]. All these methods are fully-supervised.
A concurrent work investigated semi-supervised gaze following using a saliency
prediction model [50]. This approach does not leverage the strong priors from
pretrained VL models, and its performance falls significantly behind our method.

Semi-supervised Learning methods mostly adopt a teacher-student frame-
work, which can be categorized into self-training [7, 19, 34, 62] and consistency
regularization [15,22,33,67]. Self-training methods generate pseudo annotations
from teacher models trained with labeled data, while consistency regularization
applies a consistency loss between the student and teacher model outputs, up-
dating the teacher model gradually during training. Due to task differences, most
semi-supervised recognition or segmentation methods are not directly applica-
ble to gaze following [15,30,37,49,62]. However, some general methods without
task-specific operations [33, 67] are applicable with appropriate modifications
(see Supplementary). In our method, we adopt a self-training pipeline using the
VQA prior and diffusion-based annotation prior, and show that we can get fur-
ther improvements by using applicable consistency regularization methods (e.g.
Mean Teacher [67]) to enhance the diffusion model training.

Vision-Language Models have prospered after the development of large lan-
guage models (LLMs) [10,11,40,41,70], and have succeeded in tasks such as visual
grounding, visual question answering (VQA), and image captioning [31,35,39,59,
72]. They also do well in low-shot generalization tasks by “prompting” [44,46,51],
where task instructions are given to a pretrained model to generate outputs use-
ful for other tasks. Grad-CAM [58] visualizations localize the linguistic input
effect on the visual input [36,77] thus achieving a degree of interpretability.

Diffusion Models. Denoising diffusion probabilistic models (DDPM) [23, 61]
give state-of-the-art results on image synthesis [12, 17, 18, 32, 54]. They are also
used in inverse problems [64], image editing [43], and adversarial purification [48].
These works treat images with added noise as intermediate steps of the reverse
process, showing that the noise magnitude affects the information retained from
the input. Recent work adopts diffusion models in semi-supervised learning. [22]
trains a diffusion model for 3D object detection, whereas [76] trains a diffu-
sion model for image generation with images pseudo-labeled by existing semi-
supervised models. In contrast, we use diffusion model as annotation prior, to
refine the initial noisy annotations into high-quality pseudo annotations.

3 Proposed Method

3.1 Overview

Our approach is illustrated in Fig. 2a. The goal is to leverage the knowledge
priors from a VQA model to improve gaze following with minimal manual an-
notation. To achieve this, we utilize Grad-CAM heatmaps of a VQA model that
is prompted with gaze-related questions.
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Fig. 2: (a) Overall pipeline. We compute Grad-CAM heatmaps for unlabeled im-
ages and train the diffusion model with a small human-labeled set (or with unlabeled
images using Mean Teacher). The diffusion model refines the Grad-CAM heatmaps into
pseudo-annotations. Both the pseudo-annotations and the human-labeled set are used
to train a gaze following model. (b) Grad-CAM heatmap generation. Given an im-
age with an overlaid person bounding box, we “prompt" a pretrained VQA model with
a gaze question and compute the Grad-CAM heatmap from the answer. (c) Grad-
CAM refinement. We perturb the Grad-CAM heatmaps with Gaussian noise and
pass through the reverse diffusion process to generate the refined pseudo-annotations.

However, the Grad-CAM heatmaps need refinement to be useful for training
supervision. For this, we train a diffusion model on the groundtruth heatmaps
from labeled data to learn to generate heatmaps from the human-label distribu-
tion. We use the model to refine the “noisy” Grad-CAM into high-quality pseudo
annotations. We train existing gaze following models on both groundtruth heatmaps
from labeled data and refined heatmaps from unlabeled data.

Suppose we only have a small number of images that are labeled with gaze
target locations L = {(Xi,pi)}Nl

i=1 and a larger number of unlabeled images
U = {Xj}Nu

j=1. Xi indicates an input triplet to the gaze following models, which
includes a scene image Ii ∈ R3×H×W , the cropped head image Ii

h ∈ R3×H×W ,
and the head location binary mask M i

h ∈ RH×W . We represent the annotated
gaze coordinate of the "gazing" person as pi = [pxi , p

y
i ]. For each pi, a ground

truth heatmap hi ∈ RH′×W ′
is generated by placing a Gaussian of fixed variance

centered at pi, as is done in previous gaze following frameworks [9, 14,38].

3.2 Grad-CAM heatmap extraction

We use OFA [72], a transformer-based large pretrained VL model as the VQA
model. Fig. 2b illustrates the procedure for Grad-CAM heatmap generation.
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Given an image I and the head bounding box of a person lh, we use Mask
R-CNN [21] for person detection and find the bounding box that maximally
overlaps with lh. We overlay this bounding box on top of the input image and
give it as input to the VQA model along with a “prompt” in the form of a
question: “What is the person in the green bounding box looking at?".

OFA has an encoder and a decoder. It generates a sequence of words as the
answer. We compute Grad-CAM heatmaps G = {gj}Nu

j=1 on the decoder cross-
attention weights between the input query and the image patch tokens based
on [6] after selecting the noun from the answer. Details are in the supplementary.

In our experiments, we found that Grad-CAM heatmaps are beneficial for
gaze following. Naively using these heatmaps as additional input to the current
gaze following model results in a significant performance boost. However, in real
applications, computing Grad-CAM heatmaps at test-time can be impractical
due to the memory and time costs of accessing large VL models. Instead we use
Grad-CAM heatmaps offline as pseudo-annotations for training a gaze following
model. As discussed, using noisy Grad-CAMs directly as pseudo labels can hurt
final model performance. Thus, we propose to utilize a diffusion model to refine
the initial Grad-CAM heatmaps into more suitable pseudo labels for training.

3.3 Diffusion Model Training

As there is no available diffusion model for the gaze following task, we first
train a diffusion model on the labeled data to generate gaze heatmaps h ∼
p(h|X), following the general training procedure of DDPM [23]. For ease of
understanding, we provide a synopsis of Gaussian diffusion models.

The diffusion model consists of a forward process that gradually corrupts the
input by adding Gaussian noise, and a reverse process that iteratively denoises
the noisy input. The forward process is defined by a noise schedule αt as:

q(ht|ht−1) := N (ht;
√
αtht−1, (1− αt)I) (1)

q(h1:T |h0) :=

T∏
t=1

q(ht−1|ht). (2)

where h0 is the ground truth heatmap h, h1, . . . ,hT−1 are intermediate latent
variables that represent noisy versions of h0, and hT is the terminal state which
corresponds to a unit Gaussian distribution: hT ∼ N (0, I).

The reverse process uses Gaussian transitions with fixed covariance σt and
gradually denoises the data, starting from hT . Since q(ht−1|ht) is intractable, it
is approximated with a neural network:

pθ(ht−1 | ht) := N (ht−1;µθ(ht, t), σtI). (3)

A useful property of the forward process is that it allows sampling of any inter-
mediate ht given h0, and ᾱt =

∏t
i=1 αi:

q(ht|h0) = N (ht;
√
ᾱth0, (1− ᾱt)I) (4)
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Fig. 3: Diffusion model training and refinement. (a) The diffusion model is
trained on supervised data with noise added to the ground truth heatmap at ran-
dom time steps. (b) During refinement, we add noise at a specific time step to the
Grad-CAM heatmap. We treat this heatmap as an intermediate step input during the
reverse process. Heatmaps are overlayed on the original images for illustration purposes.
The conditional feature extraction for the diffusion model is omitted for simplicity.

which is utilized in learning the reverse process. For that, we adopt the x0-
parameterization as in [3, 32] and directly predict the final h0, leading to the
following minimization objective, where hθ

0 is parameterized by a U-Net [55] :

Eh0,t

[
∥h0 − hθ

0(ht, t)∥2
]
, (5)

Fig. 3(a) shows the training procedure. At each iteration, we sample a random
time step t from U [1, T ] to generate a noisy input ht using Eq. (4). We feed ht

to the diffusion model for single-step denoising, and optimize with the loss of
Eq. (5). We condition the diffusion model with the gaze feature c extracted
from the input triplet X (input image, head crop, and head location mask)
to output a gaze heatmap grounded on the gazing person; the parametrization
of the U-Net denoiser becomes hθ

0(ht, t, c). The feature extractor follows the
structure of the VAT model [9], which takes the input triplet X and outputs
the extracted features concatenated from two pathways for encoding the scene
and gaze features. Details of the VAT structure are shown in Supplementary.
Following [16], we add the extracted features as conditional features to each layer
in the U-Net denoiser with the necessary transposed convolution layers to match
the feature size of U-Net. The diffusion model can also be further improved by
training with unlabeled data using Mean Teacher (MT) [67], a general-purpose
semi-supervised learning method. As a consistency regularization method, MT
enforces consistencies between the outputs from the teacher and student models
fed with differently perturbed input. The teacher model has the same structure as
the student model and is updated with an Exponential Moving Average (EMA)
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of the student model weights during training. In our case, we treat the diffusion
model as the student model and apply different color jittering and head bounding
box jittering to introduce different perturbations to the teacher and student
model input. During training, the diffusion model is trained with the loss on
labeled data and an additional consistency loss between the output heatmaps
from the teacher and student diffusion models on all data. We demonstrate in
our experiments that this further improves the gaze following results.

3.4 Heatmap Refinement using Diffusion Models

After training on labeled images L, the learned diffusion process models an anno-
tation prior over ground truth annotations p(h|X). During the semi-supervised
training process, the trained diffusion model is applied to the unsupervised data
U to produce the refined pseudo annotations.

The refinement process is shown in Fig. 3(b). Given a noisy Grad-CAM
heatmap g of an unsupervised input sample X, we first add an appropriate
amount of noise using the forward diffusion process ĥt =

√
ᾱtg +

√
1− ᾱtϵ

according to Eq. (4). The added noise smoothes out the noise artifacts of the
Grad-CAM heatmaps, while preserving the information of the highlighted re-
gions. Then, by iteratively applying the denoising steps in Eq. (3), we get sam-
ples of the final heatmap ĥ0 that are geometrically and contextually similar to
the human-labeled heatmap h0 while retaining gaze target information from the
noisy Grad-CAM input. During the denoising process, we used DDIM [63] to
sample the next step input using the predicted h0 from the U-Net.

The amount of information retained depends on the choice of t (i.e., the
magnitude of added noise), as proven in [43, 48]. A larger magnitude of noise
corrupts the Grad-CAM heatmaps more, decreasing the similarity between the
diffusion output and the Grad-CAM priors. Similar to [43] which achieves a good
trade-off between realism and faithfulness in image editing with an intermediate
level of noise, we also found that initializing from an intermediate timestep in the
diffusion process achieved the best trade-off between the Grad-CAM information
and the model’s learned distribution p(h|X). With this formulation, the diffusion
model can incorporate the high-quality Grad-CAM heatmaps, while ignoring the
Grad-CAM priors when they are highly noisy or highlight unlikely gaze target
locations. We provide analyses of the added noise magnitude in Sec. 4.3.

3.5 Semi-supervised Training

In semi-supervised training, we use the refined heatmaps R as pseudo labels
for the unsupervised data U . We train the gaze following model with the set of
ground-truth heatmaps H from the labeled data L and the refined heatmaps R
from the unlabeled data U . We use the Mean Squared Error (MSE) loss between
the predicted heatmap h′ and the target label h. h is either a human annotation
(labeled data) or a pseudo annotation (unlabeled data). We minimize:

L =
1

|H ∪ R|
∑

h∈H∪R

Lmse(h
′,h). (6)
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4 Experiments

4.1 Setting and Implementation Details

Datasets. GazeFollow [53], the largest real image dataset, contains the anno-
tated gaze targets of 130,339 people in 122,143 images. 4782 people are used for
testing, and the rest are used in training. For the test set, there are 10 anno-
tations per person-image pair to account for the ambiguity of the gaze target,
whereas the training set contains a single annotation for each pair. VideoAtten-
tionTarget [9] is a video dataset of 50 different shows collected from YouTube.
Each person-image pair in both training and test set has only one annotation.

Evaluation metrics. We employ evaluation metrics suggested by previous
work [9,38,53]. The distance metric (Dist.) refers to the normalized L2 distance
between the predicted gaze point (point with the highest heatmap response) and
the ground truth location. In GazeFollow reports both average (AvgDist) and
minimum distances (MinDist). Area Under Curve (AUC) evaluates the con-
cordance of predicted heatmaps with ground truth [9]. For GazeFollow, ground
truth is the 10 annotations for each test set image, whereas in VideoAttention-
Target it is a thresholded Gaussian centered at the single given annotation.

Implementation Details. We used a diffusion model with a linear noise sched-
ule and T=500 steps. The heatmap size was 64×64. We used a batch size of 80
and a learning rate of 2.5×10−4 in the semi-supervised learning experiments. For
training the diffusion model on labeled data, we used a learning rate of 5×10−5.
When refining Grad-CAM heatmaps, we used DDIM [63] for inference.

4.2 Semi-supervised Training Results

We build our gaze following experiments around the popular, publicly available
VAT model [9]. To showcase the impact of our pseudo annotation generation
method, we did not use additional modalities, processing, or supervisions, such
as depth input, pose estimations, and object-level annotations [4, 14, 20, 69] in
all experiments for the baseline methods and the diffusion model.

Following the standard experimental settings in semi-supervised learning [15,
34, 67], we considered different amounts of annotations from the GazeFollow
training set, namely 5%, 10%, and 20%, and treated the remaining data as
unlabeled. The trained student model is evaluated on the test set in all cases.

We used VAT as the student model and compared our method of generat-
ing pseudo annotations with several alternatives3: 1) Semi-VAT: the pseudo-
annotations for the unlabeled data were generated by the VAT model trained
with labeled images. 2) Semi-VAT-GC: We created VAT-GC by adding Grad-
CAM heatmaps as conditional inputs to the VAT model and modifying the VAT
model accordingly. VAT-GC was trained on the labeled data to generate pseudo
annotations for the unlabeled data. 3) VAT-MT: We use the Mean Teacher (MT)

3 Implementation details of the baselines are provided in the supplementary material.
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Table 1: Results of semi-supervised training methods with different ratios
of labeled data on GazeFollow dataset. In the top and bottom rows, we show
the performances of VAT trained with supervised data only or with full training data,
to show the potential lower and upper limits. Best numbers are marked as bold. Our
methods outperform supervised VAT trained with double the amount of annotations.

Method 5% labels 10% labels 20% labels
Dist. ↓ AUC ↑ Dist ↓ AUC ↑ Dist. ↓ AUC ↑Avg. Min. Avg. Min. Avg. Min.

VAT (Supervised) 0.230 0.161 0.835 0.202 0.133 0.869 0.182 0.116 0.892
Semi-VAT 0.222 0.152 0.846 0.195 0.128 0.875 0.176 0.110 0.896
Semi-VAT-GC 0.217 0.149 0.846 0.195 0.127 0.879 0.178 0.112 0.895
VAT-MT 0.219 0.150 0.850 0.189 0.122 0.882 0.174 0.108 0.898
GCDR (Ours) 0.201 0.135 0.863 0.179 0.115 0.886 0.166 0.103 0.902
GCDR-MT (Ours) 0.194 0.128 0.870 0.172 0.108 0.892 0.162 0.098 0.904
VAT(100% labels) [9] 0.137 0.077 0.921

method [67] to train the VAT model. The first two baselines are self-training
methods, while the 3rd belongs to the consistency regularization category.

On the other hand, we also build two versions of our method: 1) GradCAM-
Diffusion-Refinement (GCDR): our method of using a diffusion model trained
with labeled data to refine the ‘noisy’ Grad-CAM heatmaps and use them as
pseudo-annotations. 2) GCDR-MT: we used the Mean-Teacher method to train
the diffusion model with both labeled and unlabeled data, and this enhanced
diffusion model was used to refine the Grad-CAM heatmaps.

Semi-supervised training results are in Tab. 1. Our two proposed methods
consistently outperform the three semi-supervised baselines in all three annota-
tion scenarios. When training with 5% and 10% annotations, the performance
of GCDR-MT surpasses the supervised VAT trained with double the amount of
annotations. Results of training with 50% are in the supplementary.

Our methods show more prominent improvements in Dist. compared to AUC.
The AUC on GazeFollow evaluates the concordance of the predicted heatmap
with the 10 annotations on each test image, while Dist. evaluates the L2 distance
between the predicted gaze point and the annotations. Therefore, the results
mean that we did better in predicting the probable target location than predict-
ing the exact shape of the heatmap. The refined heatmaps from the diffusion
model closely resemble the spatial distribution of a human-labeled annotation,
which is a single Gaussian (Fig. 4). In contrast, the baseline methods predict the
target location less accurately, while outputting less certain and larger heatmaps
which tend to overlap more with the group-level annotations, thus favoring the
AUC (see supplementary material).

Fig. 4 visualizes the pseudo annotations predicted by the teacher models.
In the top three rows, our model retains positional priors from the Grad-CAM
heatmaps with almost identical structure to ground truth heatmaps. On the
other hand, when the raw Grad-CAM heatmaps are inaccurate or very noisy
(Row 4), our method can ignore the Grad-CAM heatmaps.
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VAT VAT-GC Raw Grad-CAM GCDR Groundtruth

Fig. 4: Visualizations of pseudo heatmaps generated by different teachers.
Our method generates the cleanest pseudo annotations while retaining the Grad-CAM
heatmaps priors (Rows 1–3). When the initial Grad-CAM heatmap responds strongly
to unlikely locations or is completely noisy, our method can also ignore it (Row 4).

4.3 Ablation Studies

In the ablation studies shown in Tab. 2, we tested the contribution of the various
components of our method. We also tested different parameters of the diffusion
sampling process in Tab. 3. All ablation studies were performed using 10% of
the GazeFollow labels and the teacher models were trained only on supervised
data (without MT) to simplify training. Additionally, in Tab. 4, we analyze the
effect of the VQA priors by training the baselines in fully-supervised settings
with/without Grad-CAM heatmaps.

Refinement methods In No Grad-CAM, the diffusion model samples pseudo
annotations from Gaussian noise without using Grad-CAM heatmaps. Without
the VQA model priors, there is a significant performance decrease. No Refine-
ment directly uses the raw Grad-CAM heatmaps as pseudo annotations without
refinement, which also leads to a significant performance decrease due to the
noisy nature of the Grad-CAM heatmaps. Argmax Refinement generates a Gaus-
sian heatmap from the maximum point of the Grad-CAM heatmap as pseudo
annotation. Despite the improvement over No refinement due to the “cleaner"
annotation pattern, performance is still far behind our method, because some
of the Grad-CAM heatmaps are low-quality (Fig. 4), so Gaussian ends up on
outliers or incorrect locations. On the contrary, our method can ignore the Grad-
CAM heatmaps in these cases. In Direct Mapping, we trained a U-Net to learn
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Table 2: Ablations of ways for gen-
erating the pseudo annotations.

Method Dist. ↓ AUC ↑
Avg. Min.

No Grad-CAM 0.191 0.125 0.867
No Refine 0.237 0.166 0.833
Argmax Refine 0.207 0.139 0.869
Direct Mapping 0.190 0.122 0.878
Proposed GCDR 0.179 0.115 0.886

Table 3: Ablations of parameters of
the diffusion model refining process.

Noise.t Inf. Steps Dist. ↓ AUC ↑
Avg. Min.

300 2 0.186 0.120 0.877
200 2 0.184 0.117 0.883
250 5 0.180 0.115 0.883
250 2 0.179 0.115 0.886

a “direct mapping” from Grad-CAM heatmaps to groundtruth heatmaps which
we then applied to the unlabeled data. This shows a large performance decrease,
because it cannot capture the full distribution that a diffusion model learns.

All the above ablations validate the importance of both the Grad-CAM
heatmaps priors and the priors that the diffusion model learns.

Added Noise Magnitude Effects In this section, we analyze the effect of
the added noise magnitude on the diffusion output. As shown in Tab. 3, adding
noise at the 250th step achieved the best trade-off between the VQA prior and
the pretrained annotation prior. As a reminder, the later the timestep we add
the noise, the larger its magnitude (the more the model ignores the Grad-CAM).

We further visualized the outputs from the same diffusion model when adding
noise at different time steps in Fig. 5. In the top 2 rows, the Grad-CAM heatmaps
highlight correct locations, while in the bottom 2 rows, they are noisy or highlight
incorrect locations. In all these cases, when adding noise at the 100th step,
the outputs are located on the highlighted region of the Grad-CAM heatmap.
When adding noise at the 400th step, the large magnitude of added noise leads
to outputs similar to sampling directly from Gaussian noise without using the
Grad-CAM heatmaps. Adding noise at step 250 appears to be the best trade-off.

Table 4: Results of using Grad-CAM heatmaps as a direct input. When Grad-
CAM heatmaps are directly input into the gaze inference process, both the VAT and
the diffusion model show significant improvement in performance.

Method Auxiliary
Input

5% labels 10% labels 20% labels
Dist. ↓ AUC ↑ Dist ↓ AUC ↑ Dist. ↓ AUC ↑

Avg. Min. Avg. Min. Avg. Min.
VAT None 0.230 0.161 0.835 0.202 0.133 0.869 0.182 0.116 0.892
VAT-GC Grad-CAM 0.210 0.144 0.848 0.188 0.121 0.884 0.173 0.107 0.898
Diffusion None 0.230 0.160 0.768 0.203 0.135 0.847 0.189 0.124 0.849
Diffusion-GC Grad-CAM 0.1990.131 0.803 0.1770.112 0.846 0.1670.103 0.870
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Grad-CAM t = 100 t = 250 t = 400 Pure noise

Fig. 5: Diffusion model output for noise added at different timesteps. Red
dots represent the ground truth annotation. Adding noise at earlier steps generates
outputs on high Grad-CAM response regions. Adding noise at later steps generates
outputs similar to sampling from pure noise. Noise at step 250 is the best trade-off.

The Effect of the Grad-CAM Heatmaps In this section, we test how much
guidance signal is provided by the VQA priors. This cannot be directly tested in
the semi-supervised scenario, so we tested by using the Grad-CAM heatmaps as
a direct input to a fully supervised gaze following model. We trained the teacher
models of Sec. 4.2 using different amounts of labeled data only, and introduce a
new baseline: Diffusion-GC, where the diffusion model trained on labeled images
was used to refine the Grad-CAM heatmaps computed directly on the test set.
Note that VAT-GC and Diffusion-GC require the Grad-CAM heatmaps of the
test images during inference, which may not be feasible in an online setting as
it necessitates access to a large vision-language model.

Tab. 4 presents the results. VAT-GC outperforms VAT in all cases, and
Diffusion-GC performs best in the distance metrics. Both the VAT and diffusion
model show large performance boosts when Grad-CAM heatmaps are directly
used as input, which offers evidence that the VQA Grad-CAM heatmaps bring
strong prior knowledge. As illustrated in Sec. 4.2, the lower AUC for Diffusion
and Diffusion-GC can be attributed to the AUC on GazeFollow being evaluated
with group-level annotations and favoring heatmaps spanning larger areas. We
analyzed this in more detail in the supplementary material.

4.4 Semi-supervised Gaze Following for Video

In this experiment, we finetune a pretrained image gaze following model to spe-
cific video scenes in a semi-supervised manner. We experiment on 10 TV shows
from the VideoAttentionTarget dataset [9], comprising a total of 31,978 gaze
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Fig. 6: Applying gaze following to videos in a semi-supervised manner. GCDR
achieves the overall best performance (Dist. and AUC averaged across videos: GCDR:
0.142, 0.843; Semi-VAT-GC: 0.155, 0.818; Semi-VAT: 0.164, 0.797; VAT: 0.166, 0.773).

annotations. For each video, we randomly select a clip that contains about 100
annotated frames (2–23% of the entire video, mostly below 10%) as groundtruth
data. The remainder of the videos are regarded as unlabeled. Following [9], we
started with the image version of the teacher model pre-trained on the Gaze-
Follow dataset and extended it temporally through an additional ConvLSTM
network. The model was then fine-tuned on the given annotations and the gen-
erated pseudo-annotations for each video. The experiment simulates a real-world
scenario where only a few frames of a specific scene are annotated.

Fig. 6 presents the video adaptation experiments results on each of the 10
videos. Our method outperforms other pseudo-annotation generation methods
in both metrics on almost all videos. When the baseline models do not perform
well, the improvement is more pronounced (2%–5% in both metrics, more details
in supplementary). These findings demonstrate that our method can be used
effectively in video gaze following, needing to initially label only a few frames.

5 Conclusion

We have proposed the first approach for generating high-quality pseudo-labels
for the semi-supervised gaze following task. We leverage the priors from large
VL models by computing Grad-CAM heatmaps from a pretrained VQA model
that is prompted with a gaze following question. The Grad-CAM heatmaps offer
strong guidance to the gaze target, but can be noisy. This led to a novel diffusion-
based refinement method that refines these initial pseudo annotations with an
annotation prior. Our approach works well on both image and video gaze follow-
ing tasks with significant savings in the annotation effort. We hope our method
will lead to the collection of larger gaze following datasets with annotation ef-
forts similar to current datasets. We plan to apply diffusion-based refinement to
“noisy” annotations generated by VL models, in new semi-supervised tasks.
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