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ABSTRACT
As online learning becomes increasingly ubiquitous, a key challenge
is maintaining learners’ sustained attention. Using eye-tracking, to-
gether with observing and interviewing learners, we can character-
ize both 1) whether they are looking at their learning materials, and
2) whether they are thinking about them. Critically, eye-tracking
only speaks to the first distinction, not the second. To overcome
this limitation, we supplemented eye-tracking with an egocentric
camera, a webcam, a retrospective recall, and mind-wandering
probes to capture a 2x2 matrix of attentional/cognitive states. We
then categorized N=101 learners’ attentional/cognitive states while
they completed a multimedia physics module. This meets two
goals: 1) allowing basic research to understand the relationship
between attentional/cognitive states and behavioral outcomes; and
2) facilitating applied research by generating rich ground truth for
future use in training machine learning to categorize this 2x2 set
of attentional states, for which eye-tracking is necessary, but not
sufficient.
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1 INTRODUCTION
Online learning is here to stay. But the Achilles’ heel of online
learning is its difficulty in gauging learners’ attention. This is be-
cause attention is critically important for learning [Wong et al.,
2022, Erickson et al., 2015, Reynolds and Shirey, 1988, Hidi, 1995].
Thus, effective online instruction should maintain learners’ atten-
tion, just as good teachers work to do in the classroom [Wolff
et al., 2016, Goldberg et al., 2021]. Because most online instruc-
tion does not measure learners’ level of attention, a good starting
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point, if possible, is to use eye tracking measures, which are among
the best online attention metrics [Duchowski, 2017, Findlay and
Gilchrist, 2003, Holmqvist and Andersson, 2018]. Still, users of eye
tracking must avoid oversimplification concerning the meaning
of looking at the screen learning materials. Specifically, there is a
complex interplay between learners’ gaze, their attention, and learn-
ing. First, learners’ attentional states are not always aligned with
their external gaze, but can instead be oriented internally to either
on- or off-task thoughts (e.g., plans for the evening) [Smallwood
and Schooler, 2006, Schooler et al., 2011]. Second, just because
a learner’s gaze has left their learning materials, does not mean
they are off-task. They could be looking elsewhere to take notes,
or to think deeply about what they just read–both of which can
be valuable to learning. These considerations call for a broader
conceptualization.

1.1 Theoretical Framework & Goals of Study
The above distinctions can be mapped onto a 2x2 matrix, shown in
Figure 1, in which learners can either look at the learning materials
on the computer screen (left column) or look elsewhere (right col-
umn), and their attention can either focus on the learning content
(top row) or on something else (bottom row) [D’Mello, 2016]. The
goal of the present study is to map the 2x2 attentional/cognitive
states of learners as they complete a multimedia instructional mod-
ule on introductory physics. Information about online learners’
attentional/cognitive states can be used by instructors, or instruc-
tional designers, to revise their learning materials to optimally
engage their learners (e.g., switching from lecture to group work)
[Goldberg et al., 2021].

A long-term goal of this project is to use the ground truth on
these 2x2 states measured in the current study to train intelligent
attention-aware software using machine learning to track online
learners’ attentional/cognitive states in real-time. Such software can
potentially be incorporated into human-computer interfaces to ask
learners if they need a break, to restore attentional resources [Ginns
et al., 2023], or prompt them with a short quiz, to estimate if re-
viewing the recently presented materials would help their learning
[Mills et al., 2020].

1.2 Proposed Approach: Additional Measures to
Produce Ground Truth for the 2x2 Matrix

1.2.1 Novelty & ResearchQuestions. To date, we have found no sig-
nificant research that directly applies the full 2x2 matrix in Figure 1
to characterize learners’ moment-to-moment attentional/cognitive
states during online learning. To do this, we start with eye tracking,
but supplement it to overcome the two limits noted earlier. If eye
tracking tells us that the learner is looking at the learning materials
(left column in Fig 1), we supplement that information by using
periodic mind-wandering probes (i.e. online self-reports) to ask the
learner if they are indeed thinking about the learning content (top
row) or not (bottom row) [Robison et al., 2019]. Conversely, if the
eye tracking tells us that the learner is looking elsewhere (right
column in Fig 1), we supplement that with information from an
egocentric camera that shows what they are looking at, and a later
retrospective recall protocol to ask if they were thinking about the
learning materials. By supplementing eye tracking in this way, we

can measure whether learners are on-task (top-row) versus off-task
(bottom-row in Fig 1) [Goldberg et al., 2019, Baker et al., 2020]. The
novel contribution of the current study is to have simultaneously
investigated all four quadrants of the 2x2 matrix shown in Figure 1,
and investigate its relationship to learning. Thus, we address the
following research questions:

RQ1: Can one account for online learners’ attentional and cog-
nitive states over the entire period of an extensive lesson using our
2x2 matrix?

RQ2: Towhat extent does the fraction of time spent by learners in
various 2x2 attentional/cognitive predict their learning outcomes?

2 METHOD
2.1 Participants
A total of 101 participants (NFemale = 53, NMale = 48) were re-
cruited through a daily online university-wide publication (age:
M = 28.08, SD = 7.82). Participants were relatively ethnically di-
verse (available race demographics based on 79 participants: 40.51%
Asian, 36.70% White, 10.13% Black or African-American, 6.33% Mid-
dle Eastern or North African, 3.80% Hispanic, Latino or Spanish and
2.53% other). Participants gave informed consent for their partici-
pation, and the study was authorized by the Institutional Review
Board. Participants were paid $60 for their participation, which
took, on average, 3 hours.

2.2 Stimuli (Learning Module)
The stimuli in the study were a multi-modal learning module on
Newton’s Second Law. The module consisted of four major sections.
It began with two short videos (7 min 35 sec and 5 min 43 sec long)
on how to write and solve Newton’s Second Law equation using
a force diagram. Then, there was a Review page summarizing the
formulas and diagrams covered during the videos. Finally, there
was a practice question to apply the concepts learned during the
module. After answering the practice question participants could
also watch a feedback video (2 min 41 secs long) showing them
how to solve the practice question. Participants had the option to
pause, rewind, or skip the videos whenever they chose, and they
also had the option to go back to earlier sections of the module.

2.3 Instruments
As shown in Figure 2, above the computer screen a webcam pro-
vided video of the learner’s face, upper body, and sometimes their
hands, at a sampling rate of 60 Hz. Beneath the computer screen
a commercial grade eye tracker (GazePoint3) measured where on
the computer screen the learner was looking, also sampled at 60
Hz. On the desktop, there was a computer mouse and keyboard
for the learner to interact with the module, again sampled at 60
Hz. Learners wore a 60 Hz egocentric camera, which captured what
the learner was looking at, including their hands or other items
(e.g., cellphone) extending beyond the view of either the webcam
or eyetracker. Participants were also provided with a notepad, pen,
and calculator to take notes or solve problems. To allow for the
possibility of participants going off-task by using their cellphones
(a common real-world distraction), they were told that they could
use their cellphones during the module, if they chose to.
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Figure 1: A 2x2 Matrix of Learners’ Attentional & Cognitive States in Online Learning (lightly revised ) [D’Mello, 2016]).

Figure 2: Instruments used for collecting multi-modal data
in the study.

2.4 Procedure
Our study began with a 26-item pre-test over the to-be learned
content, followed by a multimodal learning module on Newton’s
second law. We then gave participants a retrospective recall in-
terview, and then the post-test (identical to the pre-test). Roughly
one week later, participants took a final retention test (identical
to the pre- and post-tests) proctored on Zoom. Approximately 4-8
months later, we invited our participants to fill out a demographic
questionnaire (from the 2020 US Census), and a 16-item socially
desirable responding questionnaire.

2.5 Data Post-processing and Categorization
2.5.1 Coding of Learners Moment-by-Moment Attentional States
into the 2x2 Matrix. Figure 1 shows our 2x2 matrix of overt attention
and cognitive states. We used the eye tracker to automatically
distinguish between the columns (looking at the learning materials
vs looking elsewhere), then used self-reported mind wandering (via
online thought probes) and retrospective cued recall to assess the
content of thoughts.

2.5.2 Eye tracking. We first distinguished between looking at the
learning materials on the computer screen versus elsewhere. The

learning materials on the computer screen were defined using a
predetermined rectangular area of interest showing the module
video. Using an eye tracker, we estimated whether a participant’s
overt attention was on the learning materials, namely Column 1
(white and blue in Figure 1). Otherwise, their overt attention was
elsewhere, namely Column 2 (yellow and green in Figure 1).

2.5.3 MindWandering Probes. Wenext focused only on those cases
in which the participant was looking at the learning materials, rep-
resented by the left column of Figure 1 (shown in white and blue).
We then distinguished whether the participant was thinking about
the learning materials (i.e., were they mind wandering?) using
probes [Weinstein, 2017]. Every 120-150 seconds [Mills et al., 2020]
(randomly jittered), we replaced the on-screen learning materials
with a probe asking, ”Were you zoning out?” and participants re-
sponded by key press, either ”Y” for ”yes” or ”N” for ”no,” which
removed the probe screen. If the participant responded ”No” (not
zoned out), we categorized them as thinking about the learning con-
tent, namely the top row of Figure 1 (on-task). Here, learners were
both looking at the learning content, and thinking about it, namely
the top-left quadrant (shown in white in Figure 1). Otherwise, for a
”Yes” (i.e., zoned out) response to the mind-wandering probe, we
categorized them as not thinking about the learning content (i.e.,
off-task) for the 15 secs before the probe [Krasich et al., 2018, Faber
et al., 2020]. In this case, they were in the bottom-left quadrant
(shown in blue in Figure 1). This distinction between being on-task
versus mind-wandering, while looking at the learning materials,
has been extensively studied in the mindless-reading and mind-
wandering literatures [for reviews, see Wong et al., 2022, Mills et
al., 2020, Faber et al., 2020].

2.5.4 Retrospective cued recall using screen capture, webcam, and
egocentric camera. We next focused on cases in which the partici-
pant was not looking at the learning materials (using eye tracking),
to determine whether they were thinking about the content (i.e.,
on- vs. off-task). Note that, in these cases, eye tracking only tells
us that the participant was not looking at the learning materials
(i.e., in Figure 1, the right column, in yellow and green). To dis-
tinguish whether learners were on- versus off-task, we again used



ETRA ’24, June 04–07, 2024, Glasgow, United Kingdom Prasanth Chandran et al.

Figure 3: Examples ofmulti-modal data (from left: screen capture, webcam, and egocentric camera view) used in the retrospective
recall interview for categorizing on- and off-task behaviors while looking away from the learning materials.

mind-wandering probes, but we added a retrospective recall inter-
view to gain richer information. Specifically, any time a participant
looked away from the learning content for 2 seconds or longer, our
software inserted a flag in the data stream. Once the participant
completed the learning module, we synchronized their eye track-
ing, egocentric camera, webcam, screen content, and mouse data.
This data was segmented into 15 second periods, each beginning
with the eye tracking flag. Our Research Assistants gave the retro-
spective recall interviews, and showed the participant three data
streams for each 15 second period: 1) video of the learning material
on-screen, 2) webcam images of the participant, and 3) egocentric
camera images. Based on these data sources, we asked participants
to report if they were engaged in various on- or off-task behaviors.

Figure 3 illustrates the above process. In the top row, the we-
bcam shows the learner looking away from the screen, while the
egocentric camera shows that they appeared to be taking notes. The
Research Assistant asked the participant to confirm that, and coded

them as being in the top-right quadrant of the 2x2 matrix. Im-
portantly, since note-taking has been shown to promote learning
[Kobayashi, 2006, Jansen et al., 2017], this is a good case of a partic-
ipant looking away from the learning materials, while beneficially
thinking about them.

In the second row of Figure 3, the webcam again shows a learner
who is not looking at the learning materials, but their egocentric
camera does not show them doing any particular activity. Thus, the
Research Assistant asked if they were thinking about the learning
materials, and, here, the participant answered ”Yes.” Thus, this was
coded as ”looking away, thinking hard.” Specifically, this is a case
of non-visually guided eye movements aka gaze aversion [Servais
et al., 2023, Ehrlichman and Micic, 2012] which people commonly
do when retrieving information from long-term memory [Servais
et al., 2023, Ehrlichman and Micic, 2012], or during cognitively
demanding tasks like mental math [Epelboim and Suppes, 2001].
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In the bottom two rows of Figure 3, the webcam shows partici-
pants looking away from the learning materials, while the egocen-
tric camera shows no evidence of on-task behaviors. In both cases,
when asked by the Research Assistant, the participants reported
not thinking about the learning materials. In row 3, they reported
being distracted by someone walking by. In row 4, the participant
reported being zoned out.

In rare cases, the eye tracker lost track of the participant’s eyes,
indicating not looking at the learning materials, but the webcam
and egocentric camera indicated that they were looking on screen.
In these cases, we asked the participant 1) if they were looking at the
materials, and 2) if they were thinking about them, and categorized
them accordingly.

Retrospective recall responses were further re-coded in detail
by two trained coders (cohen’s k = 0.68 indicating adequate relia-
bility) to improve the data quality by: 1) differentiating multiple
subcategories in the 2x2 matrix, 2) fixing errors in initial coding,
and 3) recategorizing behaviors not fitting in the 2x2 matrix as
“uncategorized”.

3 RESULTS & DISCUSSION
3.1 Attentional States
To answer our first research question, we were able to completely
categorize participant’s attentional/cognitive states within the 2x2
matrix, within a one second level of resolution during the module.
Based on this categorization, we can now calculate the proportion
of time spent in each of the four attentional and cognitive states in
our 2x2 matrix. We only considered data from 98 participants, since
three lacked complete eye-tracking data. Our participants spent
most of their total time (75.8%) looking at the learning materials
and thinking about them (Q1: On-materials On-task), followed by
a moderate amount of time (18.8%) looking elsewhere, but thinking
about the learning content (Q2: Off-materials On-task).

We estimated that participants spent 2.02% of their total time
in the module looking at the materials, but mind wandering (Q3:
On-materials Off-task). For this estimate, we assumed they had
mind wandered for the 15 seconds prior to the probe, based on
prior such estimates using eye movement metrics associated with
mind wandering [Krasich et al., 2018, Faber et al., 2020]. How-
ever, this time window for mind-wandering depends on stimulus
type [Mills et al., 2020], hence future analyses will refine the inter-
val of mind-wandering for our module by further analyzing eye
movement metrics prior to “Yes” responses. Although our 2% of
the time estimate seems very small, our participants did respond
”Yes” to 23% (95% CI = [18.20, 27.75]) of the 7.15 mind wandering
probes presented to each participant on average (Median = 7, SD
= 1.48). While this rate is lower than the 31.74% mean ”Yes” rate
found in a meta-analysis of 71 educational studies, it is well within
the range of 9-53% they reported [Wong et al., 2022].

Our participants similarly reported being off-task while looking
elsewhere only 2.2% of the time (Q4: Off-materials Off-task). Thus,
participants spent the vast majority of their time (94.6%) on-task,
with only 3.9% of their time spent off-task (and the remaining 1.5% of
participants’ time uncategorized). The low proportion of time spent
off-task may be explainable in terms of participants being aware of
their attention being monitored (i.e., by webcam, eye tracker, and

ego-centric camera–the Research Assistant was in another room
once each participant was set up).

3.2 Learning
We ran a multilevel logistic regression predicting each participants’
probability of answering each question item correctly in the pre-test
(M = 0.26, SE = 0.05), post-test (M = 0.48, SE = 0.07) and retention-
test scores (M = 0.45, SE = 0.07). Planned comparisons using a
Tukey HSD test revealed that Post-test and retention scores were
significantly higher than pre-test scores (post vs pre: Z = 14.35,
p < .001; retention vs pre: Z = -12.58, p < .001), showing that the
module contributed to significant learning. Interestingly, there
was no significant difference between their post-test and retention
scores (Z = 1.53, p = .27), indicating they retained what they learned
even after one week. Participants and questions were included as
random intercepts in the above model.

3.3 Attentional states and learning
Our second research question was, to what extent does the fraction
of time spent by learners in various 2x2 attentional/cognitive states
correlate with their learning? This also serves to further test the va-
lidity of our four quadrant classification of attentional states. Thus,
we tested if the proportion of time spent in each state predicted
participants’ learning. We found that the attentional states were
highly intercorrelated. Thus, we computed a separate logistic re-
gression for each attentional state to predict correctness (1 or 0) of
each item on the post- and retention-tests based on: 1) time spent in
the corresponding attentional state, and 2) pre-test scores. Partici-
pants and questions were included as random intercepts. Both post-
and retention-tests were similarly affected by 1) the proportion of
time spent in each attentional state and 2) pre-test scores. Thus,
we only report the effect of attentional states on post-test scores.
Time spent looking at the materials and on-task (Q1) showed a
non-significant positive effect on learning (B = 1.05, p = .154)(see
Figure 4a). However, time spent looking elsewhere but on-task (Q2)
showed no effect on learning (B = -0.22, p = .784)(see Figure 4b).
Conversely, for time spent looking elsewhere and off task (Q4), we
found a significant negative effect on learning (B = -6.96, p = .004),
and likewise but marginally significant for looking at materials, but
mind wandering (Q3) (B = -9.42, p = .0989)(see Figures 4c and 4d
respectively).

It is interesting that the strongest impacts on learning were
the negative effects for time spent off-task. The lack of significant
positive effects for time spent on-task, both when looking at the
materials (in Q1) and when looking elsewhere (in Q2) may be be-
cause these behavioral categories are heterogeneous. For example,
educational research has identified numerous on-task generative
behaviors shown to increase learning, but which require more ef-
fort than looking at the learning materials and thinking about them
(e.g., summarizing, self-explaining, enacting, etc.) [Fiorella and
Mayer, 2015]. More granular analyses of subcategories of Quadrant
2 (Off-materials On-task) may reveal which on-task behaviors when
looking elsewhere, such as note-taking [Kobayashi, 2006, Jansen et
al., 2017], or gaze aversion while thinking deeply [Epelboim and
Suppes, 2001], were most associated with learning in our study.
Likewise, simply looking at learning materials and thinking about
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Figure 4: (a-d) These show relationships between time spent
in each of the four attentional states and learning (i.e., for
an average pre-test score). The solid line represents post-test
scores, and the dotted line represents retention scores.

them (Q1) does not distinguish whether one is attending to themati-
cally relevant information, associated with learning, or thematically
irrelevant information, which is not [Madsen et al., 2012, Rouinfar
et al., 2014]. Thus, more detailed analyses of participants’ atten-
tional patterns while looking at the materials and thinking about
them are needed to distinguish attentional benefits from costs in
Quadrant 1.

4 CONCLUSIONS
Our results are largely consistent with basic assumptions about
attention and learning, specifically that the time spent not thinking
about the learning materials negatively affects learning. Thus, our
results provide evidence for the validity of our categorization of
learners’ attentional and cognitive states within the proposed 2x2
matrix.

There are two major challenges to characterizing learner’s com-
plex attentional states during online learning, when using only eye
tracking. 1) When the viewer is looking on screen, the eye tracker
on its own cannot distinguish whether the viewer is thinking about
what they are looking at. 2) Conversely, when the learner is looking
away from the screen, that is all the eye tracker can only tell us. The
first challenge is frequently overcome by measuring mind wander-
ing using probes [Smallwood and Schooler, 2006, Weinstein, 2017],
self-caught instances [Schooler et al., 2011], or automated measures
using biometrics with machine learning [Hutt et al., 2019, Lee et
al., 2022]. Tackling the second challenge is a key methodological
contribution of our study. To go beyond what eye tracking can tell
us, we distinguished between two cases in which the learner was
not looking at the materials: those when the learner was on-task
(Q2), versus off-task (Q4). Methodologically, there are three keys
to our distinguishing these on-task versus off-task states while the
learner was looking away from the materials: 1) using an egocen-
tric camera to show what the learning was looking at; 2) using a

retrospective recall interview to ask the learner to confirm what
they were doing at that time; 3) having trained coders to do detailed
coding for these states.

Nevertheless, an important limitation of our study is the minimal
time participants spent in off-task behaviors, likely due to the de-
mand characteristics of the lab study. Another possible explanation
for our low times off-task is that our participants were giving so-
cially desirable responses (i.e., saying what would make them look
good), as shown previously for mind wandering study [Marcusson-
Clavertz and Kjell, 2019]. We plan to address this in our follow-up
studies, where we will collect data in the wild (e.g., home, coffee
shop, etc.) and utilize attentional-aware machine learning software
trained on our current ground-truth data to categorize learner’s
attentional states using only webcam data.

There are two key purposes of our coding of these states during
online learning. The first is to carry out important basic research on
the relationship between our coded attentional and cognitive states
and learning, using D’Mello’s [D’Mello, 2016] proposed 2x2 ma-
trix. This matrix captures both information on whether the learner
is looking at the materials versus elsewhere, and information on
whether the learner is thinking about the learning content (i.e., on-
vs. off-task). To our knowledge, no prior studies have captured
the effects of this full range of overt and covert attentional states
on learning in a single study. Our initial results show that time
spent in the four quadrants of the 2x2 matrix affects learning mostly
as predicted. Our on-going basic research will investigate these
research questions in greater depth.

The second purpose of our coding of these overt and covert
attentional states is to develop applications for attention-aware
intelligent-tutoring/online-learning. Critically, this requires the use
of machine learning. Our detailed coding of the states in the 2x2
matrix provides ground truth data from the right hand column
(looking elsewhere), which has been greatly facilitated by using
egocentric cameras and retrospective recall interviews. Our on-
going research is focused on leveraging this rich ground-truth data
to extract additional features from our webcam data, which might
not otherwise be extractable by machine learning.

Machine learning based on our ground truth data could be used
in attention-aware educational software for estimating learners’
attentional and cognitive states in the 2x2 matrix for both supply
side and demand side purposes. For the supply side, the software
could show instructional designers the proportion of learners esti-
mated to be off-task (not thinking about the learning materials), at
each time point in an instructional module. Instructional designers
can use such information to modify their modules in ways to better
engage their students [Baker et al., 2020], for example switching
from lecture to practical learning activities such as problem-solving
tasks or case studies. For the demand side, whenever a learner’s
focus on the material measurably drops, attention-aware software
can prompt learners to briefly summarize what they just learned,
then analyze that with a large language model for accuracy, and
suggest reviewing that material if their estimated comprehension
is below a threshold level [Mills et al., 2020]. Alternatively, if the
learner is estimated to be sleepy, they can be asked if they would
like to take a short break to refresh themselves and increase their
learning [Ginns et al., 2023].
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