
THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Minimal Infrastructure Support
for Teams

Minh Hoai Nguyen

Thesis submitted as a requirement for the degree of

Bachelor of Engineering (Software Engineering)

Submitted: November 1, 2005

Supervisor: Associate Professor Wayne Wobcke

Assessor: Associate Professor Arthur Ramer

Abstract

Building a group of agents which can work effectively as a team is more than just merely

putting individual agents together. Agents working in a team require the abilities to plan,

communicate and coordinate with one another. Furthermore, systems in which agents

are simply equipped with precomputed coordination plans will fail to work in complex,

dynamic environments. Thus it is extremely difficult to design and build a system of

collaborative agents from the scratch.

This thesis describes MIST, a SharedPlans framework for team-based applications.

MIST is based on SharedPlans but is further extended to deal with computational issues

which are not directly addressed by SharedPlans. MIST is also striving towards a flexible,

general framework which could reduce the implementation effort of developing practical

applications.

Acknowledgements

First, I would like to thank my supervisor A/Prof Wayne Wobcke for his invaluable guid-

ance, advice and encouragement throughout the project.

I would like to thank my family for their constant support and love.

I would also like to thank people of the class COMP4416 Intelligent Agents S2 2005. Their

participation in class created many interesting discussions which helped me to shape my

ideas.

I would like to thank Ms. Anh Nguyen for some general advice.

Last but not least, many thanks to Victor Phung for proofreading my thesis.

i

Contents

1 Introduction 1

2 Agents and teamwork models 8

2.1 BDI Agents . 8

2.1.1 Belief . 9

2.1.2 Desire . 9

2.1.3 Intention . 10

2.1.4 Mutual belief . 10

2.1.5 Recipes and plans . 10

2.2 JACKTM Intelligent Agents . 11

2.3 JACKTeams . 12

2.3.1 Team structure . 13

2.3.2 Team coordination . 14

2.4 STEAM . 17

2.4.1 Theoretical foundation of STEAM 18

2.4.2 Team structure and team formation 18

2.4.3 The team state . 18

2.4.4 Team operators and plan establishment 19

2.4.5 Monitoring and re-planning . 19

2.4.6 Selective communication . 20

2.5 SharedPlans . 20

ii

2.5.1 Intention To (IntTo) and Intention That (IntThat) 21

2.5.2 Full SharedPlans vs partial SharedPlans 21

2.5.3 Rationality axioms . 25

2.5.4 Group commitment axioms . 27

2.5.5 Summary . 28

3 MIST - Minimal Infrastructure Support for Teams 29

3.1 SharedPlans theory in MIST . 29

3.2 Language and Platform . 30

3.3 Team structure and team formation . 31

3.4 Recipe library . 32

3.4.1 Recipe . 32

3.4.2 Recipe format . 33

3.5 Capability beliefs . 37

3.6 Establishment of SharedPlans . 37

3.6.1 Attaining mutual belief . 38

3.6.2 Committing to group activity . 40

3.6.3 Deciding on a common recipe . 41

3.6.4 Resolving sub-actions . 42

3.6.5 Finding sub-teams for unfilled roles 43

3.7 Execution of SharedPlans . 44

3.7.1 The intention processes . 44

3.7.2 The command whistle . 45

3.7.3 Waiting for the right moment . 46

3.7.4 Reporting execution results . 47

3.7.5 Monitoring . 48

3.8 Responsibilities of team leaders . 49

3.9 Execution of individual actions . 50

3.10 Summary . 50

iii

4 Development of a specific application 52

4.1 A Simulation . 52

4.2 Development . 53

4.2.1 The mission . 53

4.2.2 Creating agents . 53

4.2.3 Creating knowledge about capabilities of agents 54

4.2.4 Creating recipe library . 55

4.2.5 Writing code for individual domain-specific actions 56

4.3 Teamwork in action . 56

4.3.1 Establishing SharedPlans . 56

4.3.2 Execution of SharedPlans . 58

5 Comparison with other frameworks 60

5.1 MIST versus JACKTeams . 60

5.1.1 Team structure and agents’ relationships 60

5.1.2 Team formation and plan establishment 61

5.1.3 Plan execution . 61

5.1.4 Plan failure recovery . 62

5.1.5 Application development . 62

5.1.6 Performance measure in term of communication 62

5.1.7 Expressiveness of plan languages 63

5.2 MIST versus STEAM . 69

5.2.1 Platform . 69

5.2.2 Theoretical foundations . 69

5.2.3 Representations of mutual beliefs 70

5.2.4 Team structure and team formation 70

5.2.5 Plan establishment . 70

5.2.6 Monitoring . 71

5.2.7 Plan failure recovery . 71

iv

5.2.8 Communication . 72

6 Conclusion 73

Bibliography 75

v

List of Figures

1.1 An example in the military domain . 2

2.1 Structure of a typical JACK agent . 12

2.2 Hierarchical team structure . 13

2.3 A teamplan example . 15

2.4 Team coordination in execution of FlyToTheMoon teamplan 16

2.5 Definition of Full SharedPlans . 22

2.6 Definition of Partial SharedPlans . 24

3.1 Sub-action interdependencies in ScoutMoveRecipe recipe 36

3.2 Message exchanged in plan establishment 39

3.3 Pseudo-code of an intention process . 45

3.4 Dependency Tree of Moving . 47

3.5 Team structure for MoveToBattleField . 49

4.1 A simulation in military domain . 53

4.2 Content of CapInit.txt file . 54

4.3 Content of RecipeInit.txt file . 55

4.4 Domain-specific instruction for Scouting 57

4.5 Team structure and role allocation . 58

5.1 An equivalent recipe of the teamplan in page 15 63

5.2 A recipe which teamplans’ language cannot express 65

vi

5.3 An example of teamplan with nested statements 66

5.4 Graph for teamplan in Figure5.3 . 67

vii

Chapter 1

Introduction

What are the most desirable skills that employers are looking for from their potential

employees nowadays? Perhaps they are teamwork skills. Team activities are becoming

increasingly important and popular as tasks are getting more and more complex. In team

activities, the cooperative effort of team members enables them to achieve goals that no

individual alone could possibly achieve. Also, collaborative activities have the potential of

producing synergy [24] as “the whole is greater than the sum of its parts”.

As in the case of human society, teamwork in the world of agents is also becoming more

and more critical. Team activities can be seen in many types of multi-agent environments

ranging from systems that employ teamwork to coordinate autonomous agents to systems

that seek to understand interactions among human societies. Some examples of such

systems are Robocup robotics and synthetic soccer [12], electronic commerce [11], defence

simulation [14], and modelling team tactics in whole air missions [22, 23].

Unfortunately, it is often difficult to construct team-based applications. Creating teams

of agents requires more than just grouping some individual agents together. As in human

societies, specific teamwork skills are necessary for effective team activity. More precisely,

to work effectively in a team, agents must be equipped with the abilities to plan, commu-

nicate, coordinate and cooperate with one another. Furthermore, the complexity, dynam-

icity and uncertainty of many environments are contributing factors that lead to failures

1

in many systems. For those environments, highly flexible coordination and communication

is essential as simply fitting precomputed coordination plans will not work [19].

An example in the military domain

River Enemy Holding
Point

infantry
platoon

scouting
backup

team

Figure 1.1: An example in the military domain

To see the difficulties in developing team-based application, consider the example in

the military domain which is depicted in Figure 1.1. A team of several scouting helicopters

and an infantry platoon receive a command from the top general to move to the battle

field. The mission is to transport the majority of the infantry platoon to the holding point

which is next to the battle field. The mission is still considered successful even if some

helicopters or soldiers are shot down. However, since the scouting helicopters cannot carry

many people, most soldiers will have to go on foot to the battle field. Furthermore, it

is not safe for the infantry platoon to move to the battle field without having the path

being scouted first. The infantry platoon is only armed with light weapons and will not

be able to fight against the enemy if they encounter some strong enemy fire such as tanks

and armoured vehicles. Thus several helicopters must fly forwards to the holding point,

scout and eliminate all enemy troops on the way. There are two types of helicopters, light

helicopters and heavy armed helicopters. The former type has the advantage of flying

faster and thus can dodge bullets and rockets easier. However, they are only equipped

with machine guns which are not enough to destroy enemy tanks. The heavy armed

2

helicopters move slower but can destroy enemy tanks using rockets. When an area needs

to be scouted, the light helicopters are normally used. The heavy armed helicopters are

only used in situations when no more light helicopters are available or strong enemy forces

are encountered. The rest of the team, while waiting for the scouting activity to be

completed, need to construct a bridge to cross the river as the the old one was destroyed

by the enemy aircraft. Thus, the infantry platoon can only move to the battle field once

the bridge has been built and the path has been scouted successfully.

The above example exhibits several challenges. First, the domain environment is fairly

dynamic with the involvement of many agents. Second, there is uncertainty in the environ-

ment such as the existence of enemy troops. Third, agents might be faced with incomplete

or inconsistent information. No agent has complete knowledge about the environment

and other agents. Thus, no single agent alone is capable of controlling and directing the

other agents. Fourth, agents might be shot dead and cannot participate in team activities

any more. Fifth, plans need to be repaired or changed if something unexpected occurs.

Thus, it is extremely difficult to construct such an application from the scratch. One must

consider many situations which could potentially lead to failures of systems. Several of

such situations are (Tambe [19]):

• The scouting team fails to assign roles to its members. They do not know who should

fly to the battle field first and who should stay home for the backup plan.

• The first scouting team reaches the destination. They think their mission is over and

do not report at all or only report it to the chief general.

• The first scouting team reaches the holding point. However, they only report that

information to the infantry platoon. The backup scouting team, receiving no infor-

mation from the first scouting team, fly unnecessarily to the holding point as they

assume the first scouting team are all dead.

• All members of the scouting team are shot down. No information is reported to the

base. As a result, the infantry platoon wait forever.

3

• The first scouting team encounters some enemy troops, abort the mission and turn

back. They report the information to everyone that the scouting task has failed.

Upon receiving the message, the infantry platoon abort the mission since they do

not know about the backup plan for the scouting action.

• The infantry platoon could not build a bridge because the river is too wide and the

current is too strong. Hence, they must abort the action of building the bridge and

cannot proceed to the battle field. However, the platoon did not notify the scouting

team appropriately. As a consequence, some members of the scouting team continue

sacrificing for nothing.

• The first scouting team scouts the path but do not see any enemy troops as they are

masked under the bush. The scouting team reach the holding point and notify the

infantry platoon. The infantry platoon finish building the bridge and start moving

towards the battle field. However, they are all captured by the enemy troops. No

information is propagated to the scouting team and they wait indefinitely at the

holding point.

As can be seen from the above example, there are so many issues that a team-based

application needs to address, such as, team formation, team planning, coordination, syn-

chronisation. Communication and monitoring can be used to tackle some of those issues.

However, monitoring is not always possible and communication is usually associated with

a cost. Thus another question is what agents need to monitor, what and when to com-

municate. Consider the following examples to see how communication can supplement

monitoring in team plan coordination.

Consider the case when you and your mum are cooking dinner together. This is an

important dinner since your dad invites his boss over. So, it is really necessary to have the

dinner ready on time. Your mum will be making some grilled chicken while you are baking

a Hawaiian pizza. Both of these two dishes require the oven. However, the oven is so tinny

that you and your mum decide that the chicken will be cooked first then the pizza. Now

4

further suppose that while waiting for the chicken to be cooked, you stick around in the

kitchen and help your mum. When the chicken is done, your mum takes it out and then

you put your pizza in. In this situation no communication is made since you can monitor

your mum’s activity.

Now, suppose you are addicted to The Simpsons and you want to watch it while waiting

for the chicken. Fortunately, the TV set is right in the living room which is next to the

kitchen. You are very confident that you will smell grilled chicken when your mum takes

the chicken out of the oven. So, you go to the living room and enjoy The Simpsons.

However, when your mum takes the chicken out, she immediately puts it in a pan and

covers it up to keep it away from a hungry cat which is wandering around. Therefore, you

do not smell anything at all. Fortunately for you, since your mum think that you probably

do not know that she has finished with the oven, she comes to the living room and grab

you. This situation exhibits an interesting behaviour: although you did not ask your mum

to call you, she does call you since she believes it would help you.

Next, consider the case where you want to watch The Simpsons in the living room but

your family do not like the food smell entering the living room. That is why you have

to keep the door between the kitchen and the living room shut at all cooking time. You

believe that you will not be able to know when the oven is finished while watching TV with

the door shut. Therefore, you explicitly ask you mum to signal you when she has finished

with the oven. Unfortunately, your mum refuses to cooperate since she is still very angry

with the result of your latest mathematics test. Even worse, she threatens to cut off your

spending money if you cannot bake the pizza on time. But since you desperately want to

watch The Simpsons, you turn to your grandma who is sitting right at the kitchen table

sewing a new hat for your grandpa. You ask her to call you when your mother finishes

cooking the chicken. Luckily for you, your grandma always nods for everything her sweetie

asks for, so you go and enjoy The Simpsons. This situation shows that an agent can seek

for assistance from its teammate as well a third person who is not directly involved in the

team activity.

Now, suppose you are sitting comfortably in the sofa watching The Simpsons and

5

expecting your grandma to call you when the oven can be used. Suddenly, you remember

that your grandma is an absent minded person. Thus you come to believe there are

chances that grandma will not call you on time. Because of that you occasionally yell out

“Grandma, has mum finished with the oven yet”. If she replies “Not yet” then you could

continue enjoying The Simpsons. However, if the reply is “Oh sorry sweetie, she finished

10 minutes ago” then you have to rush into the kitchen, bake the pizza straight away

with the hope that 10 minutes is not a long delay. This scenario shows that not only can

an agent acquire information by registering his interests with others but also by querying

them occasionally.

The above scenarios illustrate how reasoning about starting conditions of actions can

lead to communication and arrangement between agents in case monitoring is not possible.

Of course, there are other situations where communication is really necessary.

Over the years, several teamwork models, both theoretical and architectural, have

been proposed. Those models, though different in approaches and categories, all try to

address some issues of teamwork mentioned above. Examples of such theories are the

Joint Intention theory of Cohen and Levesque [5, 6], the SharedPlans theory of Grosz and

Kraus [9, 10], and the social structure theory of Tidhar [20, 21].

Among many models for collaborative activities, SharedPlans provides a theoretically

sound framework for studying teamwork. SharedPlans aims to define the mental attitudes

an agent must have to engage in collaborative activities. Several applications have been

reported to be inspired by the SharedPlans theory, such as, an e-commerce system [11],

a distance learning tool [15] and a discourse structure model [13]. Although SharedPlans

have been shown to be useful, there is no framework which supports the rapid development

of SharedPlans applications. The applications of SharedPlans mentioned above are just

isolated solutions for specific problems. Thus there is an emerging need for building such

a framework.

This thesis focuses on the development of a SharedPlans framework. The aim is to con-

struct a flexible, general SharedPlans framework which could reduce the implementation

effort of developing domain specific applications. Our work has resulted in MIST (Minimal

6

Infrastructure Support for Teams) which will be described in this thesis. MIST follows the

SharedPlans theory fairly closely but also considers other computational issues which are

not addressed in SharedPlans. In particular, MIST addresses the issues of dynamic team

formation, plan establishment, communication, coordination, performance monitoring and

failure recovery. MIST is built on JACK Intelligent Agents platform [1].

The rest of this thesis is structured as follows. Chapter 2 provides a summary of BDI

agents and teamwork models. The implementation of MIST is described in Chapter 3. It

will be followed by Chapter 4 where we show how a specific application can be developed

from MIST. Comparisons of MIST with other systems are discussed in Chapter 5. Finally,

Chapter 6 concludes the thesis and raises some questions for future study.

7

Chapter 2

Agents and teamwork models

This chapter discusses agents and agent teamwork models. It first revises some basic

concepts such as agent, belief, mutual belief, desire and intention. Next, it explains the

differences between recipes and plans. Section 2.2 will discuss JACKTM Intelligent Agents

which is the platform which our system, MIST, is developed on. The final sections describe

some teamwork theories and frameworks which are closely related to our work. They are

JACKTM Teams, STEAM and SharedPlans theory.

2.1 BDI Agents

Wooldridge and Jennings [25] define agent as hardware or software-based system which

exhibits the following characteristics:

• autonomy: “agents operate without the direct intervention of humans

or others, and have some kind of control over their actions and internal

state”;

• social ability: “agents interact with other agents (and possibly humans)

via some kind of agent-communication language”;

• reactivity: “agents perceive their environment, (which may be the physical

world, a user via a graphical user interface, a collection of other agents,

8

the Internet, or perhaps all of these combined), and respond in a timely

fashion to changes that occur in it ”;

• pro-activeness: “agents do not simply act in response to their environ-

ment, they are able to exhibit goal-directed behaviour by taking the ini-

tiative”.

Some other specific definitions used in the literature are listed by Franklin and Graesser [7].

Those definitions view agents in slightly different ways. However, most of them agree that

the key properties of agents are autonomy, reactivity and pro-activeness. Social ability is a

mandatory requirement of agents in the definition of Wooldridge and Jennings but not in

others. Social ability, the ability to communicate, is an extremely important characteristic

in multi-agent systems, especially in systems where agents need to work closely together

as a team, because communication is essential for coordination.

A subclass of “rational” agents are BDI agents (Belief-Desire-Intention agents). BDI

agents have certain mental attitudes of beliefs, desires, and intentions which correspond

respectively to the information, motivational, and deliberative states of the agents [17].

2.1.1 Belief

Belief refers to mental acceptance of truth or validity of something. Each BDI agent

maintains a set of beliefs about the environment in which it inhabits. An agent situated

in a dynamic environment constantly observe the environment and changes its beliefs to

be consistent with its observations. An agent might believe in something which later turns

out to be false. However, for rational agents, beliefs must be consistent at all times.

2.1.2 Desire

Desire is a mental attitude of an agent which provides motivation for the agent’s activities.

It is not unusual for agents to have more than one desire at a time. Furthermore, the desires

of an agent could even conflict with its beliefs. For example, an agent can have both the

9

desire of loosing weight and the desire of having more chocolate to eat while believing that

the more chocolate he eats the rounder he becomes.

2.1.3 Intention

Intention is another mental attitude of an agent which is regarded as the commitment

of the agent to some choice of action [5]. Bratman [3] further argues that intention is a

primitive mental state which cannot be reduced to beliefs and desires. Unlike desires which

could be conflicting with each other, intentions must be consistent among themselves and

with the beliefs of the agents.

According to Bratman [3], intention has three functional roles. First, prior intentions

frequently pose means-end problems for deliberation. For example, if an agent in Sydney

intends to go to Melbourne tomorrow, he must gradually fill in his plan by figuring out

how to get there. Second, prior intentions constrain the adoption of new intentions which

conflict with the existing ones. For instance, an agent who intends to stay home to study

for the exam cannot consistently adopt a new intention to go to the cinema with friends

on the same night. Third, intentions control the conduct of agents; an agent eventually

acts on his intentions.

2.1.4 Mutual belief

Mutual belief is an important concept in team activities. A group of agents are said to

have mutual belief about a proposition α if each agent believes in α, each agent believes

the other agents believe in α, each agent believes that any other agent believes all other

agents believe in α, etc. The argument covers the beliefs of each agent about any other

agent’s beliefs to any arbitrarily large depth.

2.1.5 Recipes and plans

Bratman [3] and Pollack [16] distinguish two kind of plans, plans which an agent knows

and plans which an agent adopts to subsequently guide his actions. Pollack then names

10

plans of the former type as “recipes”. A recipe for an action is just a set of sub-actions

together with their constraints and orders of execution designed to achieve the action.

Saying that an agent has a recipe for an action only means that the agent knows how

to achieve that action. In contrast, an agent has a plan to do an action must hold some

certain beliefs and intention about doing the action.

2.2 JACKTM Intelligent Agents

JACK [1] is framework which encompasses the full Java syntax and extends it to provide

agent-oriented features such as agents, plans and beliefs. Programs written in JACK can

be preprocessed and converted to Java files which will then be compiled to Java virtual

machine code using the standard Java compiler.

The structure of a typical JACK agent is depicted in Figure 2.1. Each agent has a

static set of predefined plans. Each plan declares what events it can handle. The message

dispenser receives external event messages from other agents or internal messages from

some alive plans. Upon receiving a message, the message dispenser checks the type of

the message and looks into the plan library to seek an appropriate plan which has the

ability to handle messages of that kind. If such a plan is found, the message dispenser will

create an instance of that plan and pass the responsibility of handling the message to it.

The body of a plan contains a set of instructions (both the full power Java instructions

and JACK’s language extension) for handling the types of events which it is declared

to handle. A plan can retrieve and update the agent’s belief sets. It can also interact

with other legacy systems (environment) by calling the Java interface functions of those

systems. Furthermore, plans can be used in communication among agents; unlike the

interaction between plans and the environment, communication between agents is done

by exchanging messages (JACK messages). A plan can indirectly invoke other plans by

posting internal messages to the message dispenser which, in turn, launches appropriate

plans to handle the messages. Thus, it is possible for a plan to create some sub-plans,

including concurrently executing sub-plans, to achieve a desired goal.

11

Message
Dispenser

Other agents

Beliefs

Plan Library

messages

Plan

launchmessages

Environment

Figure 2.1: Structure of a typical JACK agent

There are some other features of JACK that make it appealing for agent development.

First, it provides mechanism for parallel execution. Second, JACK includes a mechanism

for handling plan failures. The message dispenser can invoke a new different plan to

handle a particular message if the previously invoked plans failed. Furthermore, the default

mechanism can be overridden by some special plans called meta-plans. Thus, it is possible

to use JACK to build agents which exhibit plan-repairing abilities. The third interesting

feature of JACK is the built-in types for belief sets. Compared with traditional Java

classes, JACK’s belief sets provide several additional functionalities such as unification,

assertion, retraction and querying. In this manner, JACK is more or less similar to a

Prolog system which supports a lightweight version of first order logic. This feature is

very useful for creating agents with reasoning capabilities.

2.3 JACKTeams

JACKTeams [2] is an extension of JACK which supports team-oriented programming.

This section discusses the team structure and coordination mechanism of teams developed

by JACKTeams.

12

2.3.1 Team structure

The team is a basic entity in JACKTeams. Team can consist of sub-teams which, in turn,

can have sub-sub-teams. A team knows its sub-teams but not normally the sub-teams of

its sub-teams. It is possible for a team to participate in two different teams at the same

time. Thus, it is possible to have a hierarchical team structure as in Figure 2.2. Each

team has an abstract unique entity called team agent. Team agent is neither a sub-team

nor a member of any sub-team; but it plays crucial role in team coordination (discussed in

section 2.3.2). It is possible for teams to have no sub-teams. In that case, the team agent

is identical to the team itself and the whole team can be regarded as a single individual

agent.

Team 0

Team 8

Team 4Team 3

Team 7Team 6Team 5

Team 2Team 1

Figure 2.2: Hierarchical team structure

The team agent

The existence of the team agent is a distinctive feature of the JACKTeams approach. The

team agent has its own beliefs, desires and intentions. Like individual agents, the team

agent maintains a set of predefined reactive plans which would be used to handle some

event messages when needed. We will refer to those plans as teamplans. The team agent

13

declares what roles the team requires and what roles the team can perform as a sub-team

in another team. The team agent is also responsible for finding sub-teams and assigning

roles to them.

Relationship between team members

The relationships inside a team are many-to-one relationships. The team agent is the

only one who establishes contacts and relationships with other members. It is possible for

agents to involve in team activities without knowing their teammates. Thus, establishing

mutual beliefs or joint intention in a team is unnecessary and irrelevant.

2.3.2 Team coordination

Team coordination of team members is handled completely by the team agent. The team

agent is a reasoning entity of the team which acts like a commander who monitors and

controls team activities. The team agent instructs team members what and when to do

something. Teamplans are used by the team agent to serve that purpose.

Teamplans

The roles of teamplans to teams are analogous to those of individual plans to single agents.

Each team, more precisely the team agent, maintains a set of predefined teamplans. The

header of each teamplan declares what event messages it can handle. The body of a

teamplan contains a set of instructions for how team members can coordinate and how

the common goal can be achieved.

Consider the simplified code of an example of teamplan FlyToTheMoon in Figure 2.3.

The beginning of the plan declares that it requires three roles, a technician, a main pilot and

an assistant pilot. The plan does not abide roles to any specific agents or sub-teams in the

plan definition stage. Instead, it uses the names technician, mainPilot and assistantPilot

to refer to sub-teams which fill the roles. The plan also states that it can be used to handle

the event FlyToTheMoonEvent.

14

teamplan FlyToTheMoon extends TeamPlan {

#handles event FlyToTheMoonEvent;

#uses role Technician technician;

#uses role MainPilot mainPilot;

#uses role AssistantPilot assistantPilot;

body(){

@team achieve(technician, CHECK ENGINE);

@wait for(elapsed(600));

@team achieve(technician, PUMP FUEL);

@parallel(SUCCEEDS WHEN ALL SUCCEED){

@team achieve(mainPilot, FLY SPACECRAFT);

@team achieve(assistantPilot, MONITOR SPACECARFT);

}

@team achieve(mainPilot, CALL EARTH CONTROL CENTRE);

}

}

Figure 2.3: A teamplan example

15

The body of the plan in Figure 2.3 basically expresses the sequence of execution

of its sub-actions. Action CHECK ENGINE must be executed first by the technician.

PUMP FUEL can be started 10 minutes (600 seconds) after the engine has been checked

(Suppose, the engine gets hot after checking; that is why the technician must wait 10

minutes for it to cool down. Unlike car engines, the engine of this spacecraft might

explode if the fuel is pumped in when hot). After the fuel tank has been filled, the

spacecraft is ready for the mission to the moon. Actions FLY SPACECRAFT and MON-

ITOR SPACECRAFT need to be done in parallel by mainPilot and assistantPilot respec-

tively. Finally, when both actions FLY SPACECRAFT and MONITOR SPACECRAFT

have been executed successfully (they arrive at the moon), the main pilot will need to

inform the control centre by executing the action CALL EARTH CONTROL CENTRE.

The plan would fail and be aborted if any step of the above sequence fails and succeeds

otherwise.

Team agent

Technician MainPilot AssistantPilot

do CHECK_ENGINE

do PUMP_FUEL

do FLY_SPACECRAFT

do MONITOR_SPACECRAFT

do CALL_EARTH_CONTROL_CENTRE

Figure 2.4: Team coordination in execution of FlyToTheMoon teamplan

16

Figure 2.4 shows the sequence of interactions between the team agent and other team

members. First, the team agent tells the technician to check the engine. When the

technician has done that, he reports it back to the team agent. The team agent looks at

his watch and waits for 10 minutes. He then sends another instruction to tell the technician

to fuel the spacecraft. After, the fuel tank has been filled, the technician reports back to

the team agent. The team agent then instructs the pilots to fly to the moon by telling the

main pilot to control the spacecraft while commanding the assistant pilot to monitor the

spacecraft at the same time. Both the main pilot and the assistant pilot will individually

notify the team agent when they finish their tasks. When the team agent knows both

pilots have executed their actions successfully, it requests the main pilot to call the control

centre. The main pilot does that and reports back to the team agent. At this time, the

team agent knows that the teamplan has been executed successfully.

The execution of the FlyToTheMoon teamplan illustrates some important features of

JACKTeams. Sub-teams do not know what they need to do until getting requests from

the team agent. The team agent does not send several requests to the same sub-team

at a time. Instead, it sends one request at a time and waits for the termination of the

execution. Thus, it is not possible for the technician to continue to execute PUMP FUEL

after finishing executing CHECK ENGINE without reporting back to the team agent.

2.4 STEAM

STEAM (A Shell for TEAMwork) is a framework for building team-based application.

The construction of STEAM is aimed towards a flexible, general framework. This section

outlines several key points of the STEAM framework which are described by Tambe in [18,

19]. In particular, this section describe the following aspects: theoretical foundations, team

structure, team formation, the team state, team operator, plan establishment, monitoring

and communication.

17

2.4.1 Theoretical foundation of STEAM

STEAM is based on the JointIntention theory of Cohen and Levesque [6] augmented by

several concepts of SharedPlans theory. Cohen and Levesque focus on the definition of

joint intention, the joint mental state of the team. A team jointly intend to do an action if

they jointly committed to the action while mutually believing throughout that they were

doing it. In turn, the joint commitment requires each agent to adopt a new goal of making

the state of the joint action mutually believed by the group should the agent discovers the

change in the state of the joint action. Thus, one could derive a communication obligation

for agents from the JointIntention theory: an agent must notify his teammates once he

discovers that the joint action has been achieved, will never be achieved or is no longer

relevant. STEAM does enforce that communication obligation upon its agents. Unlike

JointIntention, SharedPlans does not hold a key role in STEAM; it only lends the concept

of hierarchical team structure and task decomposition to STEAM.

2.4.2 Team structure and team formation

STEAM supports the building of hierarchical team structure just as JACKTeams does.

Each team has a team leader and might consist of individual agents or sub-teams. The

structure of each team, however, is predefined. The team leader is also predetermined.

Furthermore, teams cannot be formed dynamically. Therefore, there is no team formation

in STEAM.

2.4.3 The team state

The team state is a distinctive approach of STEAM to representing mutual beliefs. Each

agent maintains its own copy (no shared memory) of the team state which is the agent’s

model of the team’s mutual beliefs. Each agent maintains a copy of the team state for

every team that it participates in. The copy of the team state of each agent is initialised

with information about the team, and it can be updated. However, the consistency of

team members’ copies of the team state must be maintained at all time. STEAM does

18

this by restricting the modification of copies of the team state. If the agent modifies its

copy of the team state, it must notify others so that they can update their copies of the

team state accordingly.

2.4.4 Team operators and plan establishment

The team operator is a key novelty in STEAM. Team operators are reactive plans which

are analogous to Pollack’s recipes or JACKTeams’ teamplans. They describe the set of

actions together with their constraints which need to be done to achieve a goal. In fact,

each team operator consists of preconditions rules, applications rules and terminations

rules. In addition, the relationship between a team operator and its contributions from

individuals or sub-teams is explicitly represented.

When agents want to execute a team operator, they must establish it as a joint in-

tention. The process of joint intention establishment involves several steps. The team

leader first broadcasts a message to request the execution of the team operator. Receiving

requests from the team leader, other agents broadcast their commitments. The joint in-

tention is established when every agent receives confirmation from everyone else. At this

point, the agents will create or update their copy of the team states accordingly.

2.4.5 Monitoring and re-planning

STEAM supports monitoring of team performance by exploiting the explicit representation

of the relationship between team operators and their constituent actions (called roles in

Tambe [19]). Thus, a team operator succeeds or fails depending on the execution of the

boolean combination of roles which it depends on. In STEAM, each agent independently

monitor the performance of the team operator. Agents only communicate when one of

them discovers that the team operator has failed, succeeded or is no longer relevant.

STEAM does not facilitate the tracking the performance of teammates as they are partly

domain dependent.

If, based on the performance monitoring, an agent discovers that a team operator α

19

is unachievable, it would invoke another team operator β for repairing the plan (if there

is such an operator). However, the agent does not need to act as a leader to facilitate

communication to establish the joint intention for the repairing plan. The agent assumes

that everyone will invoke the same team operator once they discover that α is unachievable.

Thus, commitment to the repairing plan β is automatically achieved.

2.4.6 Selective communication

Tambe reasons that the large number of team operators might result in significant com-

munication overhead as the agents need to communicate to establish and terminate team

operators. Therefore, STEAM is integrated with decision-theoretic selectivity. This in-

volves assigning costs and rewards to the possible actions: communication and not com-

munication. Furthermore, one must determine the probability of mis-coordination due

to communication or not communication. From this setup, agents reason about a choice

which yields the largest possible expected outcome. Thus, agents will communicate only

when the benefit of communicating is expected to be greater than that of not communi-

cating.

2.5 SharedPlans

Grosz and Kraus, in their papers [9, 10], propose a formalisation of the notion of a group

of agents having a SharedPlan. The formalisation specifies mental attitudes an agent

must have to engage in collaborative activities. It also identifies responsibilities and com-

mitments of agents in group activities. The formalisation uses first-order logic enhanced

by some modal operators, meta-predicates and action expressions. Some axioms are also

stated to govern commitments and rational behaviour of agents. This section outlines

several key points of the formalisation. First, it describes what Intention To and Intention

That are. They will be followed by the explanation of definitions of SharedPlans. Finally,

we reveals several axioms of SharedPlans. We divide the axioms into two categories, ratio-

20

nality axioms and group commitment axioms (The names ‘rationality axioms’ and ‘group

commitment axioms’ are terminologies given by us, not by the authors).

2.5.1 Intention To (IntTo) and Intention That (IntThat)

In SharedPlans, there are two kinds of intentions: Intention To and Intention That.

SharedPlans theory enforces some constraints on agents’ beliefs and commitments if they

intend to do some actions. If an agent intends to do a basic level action, the agent must

believe he can do the action and commit himself to doing the action. If the agent intends

to do a complex action, he must have a recipe for the action and intend to do all constitute

sub-actions. The recipe might be partial. In this case, the agent must intend to elaborate

the recipe.

IntThat is a novel intentional attitude [18]. IntThat is used to represent an agent’s

expectation that some proposition holds. IntThat is similar to IntTo in the sense that

it rules out the adoption of conflicting intentions and it constrains re-planning in case of

failure. There is, however, a significant difference between IntThat and IntTo. IntTo com-

mits agent to means-end reasoning and acting. In contrast, IntThat does not necessarily

impose that.

2.5.2 Full SharedPlans vs partial SharedPlans

The SharedPlans theory distinguishes between partial and full SharedPlans. A full Shared-

Plan for an action is a complete plan in which all details for how to achieve the goal have

been determined. Partial SharedPlans are basically the same as full SharedPlans but with

some incomplete information. For example, an agent might just have a partial recipe for

the action or he might not know how to execute some sub-actions in the recipe.

Figure 2.5 provides a informal definition for full SharedPlans. The clause (1a) basically

requires that every agent commits to the performance of the action Aα. Furthermore, it

requires that the commitment of every agent must be mutually believed. Clause (1b)

ensures that the group have a common recipe and that recipe must be complete. Since

21

For a group GR to have a Full SharedPlan (FSP) to do a complex action Aα, it is required

that:

1a. GR mutually believe that each member agent intends that the group do

Aα,

1b. GR mutually believe that they have a full recipe for doing Aα,

1c. Each action in that recipe is fully resolved.

A single-agent action Aβ is fully resolved if:

2a. Some agent Gβ in GR have a full individual plan to do Aβ,

2b. GR mutually believe that Gβ have a full individual plan to do Aβ, and

2c. GR mutually believe that each member agent intends that Gβ be able to

execute Aβ.

Similarly, a multi-agent action Aκ is fully resolved if:

3a. Some subgroup Gκ in GR have a full SharedPlan to do Aκ,

3b. GR mutually believe that Gκ have a full SharedPlan to do Aκ and are able

to do Aκ, and

3c. GR mutually believe that each member agent intends that Gκ be able to

execute Aκ.

Figure 2.5: Informal definition of a Full SharedPlan (FSP). Source: Grosz et al [8, 9]

22

the recipe is known and complete, all sub-actions of the recipe are known. The definition

of full SharedPlans requires that every action in the recipe is fully resolved.

The second part of Figure 2.5 explains what it means for a single-agent action to be

fully resolved. Basically, there must be an agent who has an individual plan1 to do the

action and whose identity is known by everyone. Furthermore, the existence of such a

plan is mutually believed by the group. Clause (2c) requires that everyone commits to the

success of that agent in executing the action.

The conditions for a multi-agent action to be fully resolved are quite similar to those

of single-agent action. There must be a sub-group Gκ, whose identities are known by

everyone, which have full SharedPlan to execute the action. Furthermore, the whole

group must mutually believe in the existence of a full SharedPlan for Gκ to execute the

action; but the identity of the SharedPlan is not necessarily known to the group. Clause

(3c) requires the commitment of everyone to the success of Gκ in executing the action.

Figure 2.6 presents the informal definition of partial SharedPlans. According to the

clause (4a), the group must hold the mutual belief that all agents commit to the success

of the action. Clause (4b) requires the group to mutually believe and agree on a recipe.

If the recipe is partial, i.e. only some sub-actions that they need to be performed are

identified, the group must have a full SharedPlan to complete the partial recipe. While

it is possible for some necessary actions to remain unknown, every known action must be

either at-least-partially-resolved or unresolved. That is what clause (4c) is about. For

example, suppose a group want to get to Melbourne from Sydney. The group agree on a

recipe to fly there. However, they do not know all the details of that recipe. All they know

is they have to go to the airport and board a plane. They do not know whether they need

tickets in advance; they do not know whether they need to check-in or not. Thus, there

are some actions which have not been determined yet. However, the group have a plan to

elaborate the partial recipe to the full one by calling up Sydney airport. For actions which

1SharedPlans theory also provides definitions for full and partial individual plans. An agent has

individual plans must also hold some appropriate beliefs and intentions. Those definitions are not discussed

here but they can be found in [9].

23

A group GR have a Partial SharedPlan (PSP) to do a complex action Aα if:

4a. GR mutually believe that each member intends that the group do Aα,

4b. GR mutually believe that they have a full recipe for doing Aα, or they

mutually believe that they have a partial recipe that may be extended

into a full recipe they can use to do Aα and they have a full plan to select

such a recipe, and

4c. Each action in the (possibly partial) recipe be either at-least-partially-

resolved or unresolved.

A single-agent action Aβ is at-least-partially-resolved if:

5a. Some agent Gβ in GR has an individual plan to do Aβ,

5b. GR mutually believe that Gβ has an individual plan to do Aβ, and

5c. GR mutually believe that each member agent intends that Gβ be able to

execute Aβ.

Similarly, a multi-agent action Aκ is at-least-partially-resolved if:

6a. Some subgroup Gκ in GR have a plan to do Aκ,

6b. GR mutually believe that Gκ have a SharedPlan to do Aκ, and

6c. GR mutually believe that each member agent intends that Gκ be able to

execute Aκ.

A single-agent action Aǫ is unresolved if:

7a. GR mutually believe that some member of GR could do Aǫ, and

7b. GR have a full SharedPlan to select such an agent.

Similarly, a multi-agent action Aµ is unresolved if:

8a. GR mutually believe that some subgroup of GR could do Aµ, and

8b. GR have a full SharedPlan to select such a subgroup.

Figure 2.6: Informal definition of a Partial SharedPlan (FSP). Source: Grosz et al [8, 9]

24

the group have already identified such as go to the airport and board a plane, they must

form appropriate intentions and beliefs.

An individual-agent or a multi-agent action is considered at-least-partially-resolved if

some agent Gβ or some subgroup Gκ are planning to do it. The identity of that agent or

sub-group must be known by everyone. Furthermore, the group must mutually believe that

there exists a plan (either an individual plan or a SharedPlan) which could be executed by

the agent/sub-group in order to achieve the action. Lastly, clauses (5c) and (6c) state that

the commitment of each agent to the success of agent Gβ or sub-group Gκ in performing

the action is mutually believed.

The last parts of Figure 2.6 define what an unresolved action is. Clauses (7a) and (8a)

requires the group to mutually believe in the existence of an agent or a sub-group which

could do the job. The identity of that agent or group is not required to be known. However,

the group must have a full SharedPlan to select such an agent or group. For example,

suppose a team of several terrorists are planning a suicide attack on a US embassy. The

plan involves an action in which one terrorist must drive a bomb-loaded truck to the

embassy. The whole group knows that everyone of them can do the job and that is

mutually believed by everyone. However, since no one really wants to die, no one steps up

to take the mission. Thus, the action has not been resolved yet. The action is considered

unresolved if the group has a full SharedPlan to select such a person. For example, the

group might plan to toss a coin to choose one randomly or they might plan to sacrifice the

oldest person.

2.5.3 Rationality axioms

The SharedPlans theory of Grosz and Kraus [9] also provides several rationality axioms

which constrain the relationship between beliefs, intentions and other mental attitudes.

This section lists only two of those axioms for illustrative purposes.

Axiom 1:

Bel(G,CONF (α, β, Tα, Tβ, constr(Cα), constr(Cβ)), Ti)) ⇒

25

{[Int.Tx(G,α, Ti, Tα, Cα) ⇒ ¬(Int.Ty(G, β, Ti, Tβ, Cβ))]∧

[Int.Ty(G, β, Ti, Tβ, Cβ) ⇒ ¬(Int.Tx(G,α, Ti, Tα, Cα))]}.

Here, Int.Tx, Int.Ty ∈ {Int.To, Int.That} and α/β may be either an action

(if Int.Tx/y = Int.To) or a proposition (if Int.Tx/y = Int.That)

In Axiom 1 above, the meta predicate CONF is used to express that two actions, or

two propositions, or an action and a proposition are conflicting with each other.

CONF (α, β, Tα, Tβ, constr(Cα), constr(Cβ)) holds if one of the following situations occurs:

1. Both α and β are actions. The execution of α under the constraints of the context

of α conflicts with the execution of β under constraints of β’s context. This conflict

may arise either because the execution of one action will lead to situation in which

the agent is no longer able to perform the other action, or because there are conflicts

between the constraints on the performance of the two actions.

2. α is an action while β is a proposition. α and β are conflicting if the performance of

α will cause β not to hold, or conversely, α cannot be performed if β holds.

3. α and β are both propositions which cannot simultaneously hold.

Thus, Axiom 1 basically states that an agent cannot, at any time, intend to do two

actions which are believed to be conflicting with each other. The same happens for propo-

sitions. An agent cannot intend that two conflicting propositions hold.

Axiom 2:

(∀α, Ti, Tα)[basic.level(α) ∧ Bel(G, Int.To(G,α, Ti, Tα, Cα), Ti)

⇒ Int.To(G,α, Ti, Tα, Cα)]

Axiom 2 basically states that if an agent G believes it intends to do a basic-level action

(an action which cannot be divided further) then it really intends to do the action.

26

2.5.4 Group commitment axioms

Apart from rationality axioms, SharedPlans theory also provides some axioms which regu-

late agents’ behaviour once they commit to group activities or the success of other agents.

Axiom 7 is given below:

Axiom 7:

(∀η,G1, Ti, Tα){

[single.agent(η)∧

(∃α, Tα, Rα, β,G2)[multi.agent(α) ∧ (∃GR)[

(G1 ∈ GR)∧ SharedP lan(GR,α, Ti, Tα, Cα) ∧

[Int.Th(G1, (∃Rβ)CBA(G2, β, Rβ, Tβ, constr(Cβ/α)), Ti, Tβ, Ccba/β/α)] ∧

[cost(G1, Do(GR,α, Tα, constr(Cα)), Tα, Cα, Rα,

¬Do(G1, η, Tη, constr(Cη/cba/β/α)) ∧ Do(G2, β, Tβ, constr(Cβ/α))) –

cost(G1, Do(GR,α, Tα, constr(Cα)), Tα, Cα, Rα,

Do(G1, η, Tη, constr(Cη/cba/β/α)) ∧ Do(G2, β, Tβ, constr(Cβ/α))) >

econ(cost(G1, Do(G1, η, Tη, constr(Cη/cba/βα)), Tη, Cη/cba/β/α, Rη))] ∧

Bel(G1, (∃Rη)CBA(G1, η, Tη, constr(Cη/cba/βα)), Ti)]]] ⇒

Pot.Int.To(G1, η, Ti, Tγ , Cη/cba/β/cba)}

Axiom 7 is about helpful behaviours in the SharedPlans context. In Axiom 7, G1 and

G2 are two members of a group GR. The group GR have a SharedPlan to execute the

group action α. G2 is assigned to execute action β and G1 knows that. Furthermore, G1

commits to the success of G2 in performing β (one requirement of SharedPlans). If there is

an action η (an action which is not part of the recipe for the group action α) such that G1

believes he can perform it, and furthermore, doing it would lessen the burden or the cost

of G2 in bringing about β, then G1 would consider doing η. To express that, the axiom

uses auxiliary functions cost and econ. Thus, the agent is judging the benefit to the group

against the effort that he might need to put in. The modal operator Pot.Int.To stands for

27

‘Potential Intend To’. Pot.Int.To is a variation of IntTo which represents the mental state

of an agent when it is considering adopting the intention. Grosz and Kraus [9] refer to

Bratman [4] that potential intentions provide motivation for an agent to weight different

possible courses of actions or options.

2.5.5 Summary

In short, the SharedPlans theory specifies mental attitudes an agent must have to engage

in collaborative activities. Furthermore, using axioms, the theory constrains rational be-

haviours and commitments of agents in group activities. The theory, however, does not

address some computational issues such as team coordination or communication. This will

be discussed in the next chapter where we explain how SharedPlans is implemented.

28

Chapter 3

MIST - Minimal Infrastructure

Support for Teams

This chapter describes MIST, a framework for team activities. MIST is based on Shared-

Plans which specifies what agents need to believe to engage in group activities. Shared-

Plans theory is used to guide the process of establishing team plans and decomposing

complex actions. Meanwhile, the coordination mechanism requires team agents to reason

about actions’ starting and termination conditions and make necessary communications.

This chapter first describes the language and platform that MIST is built on. Then, it

discusses the team structure, team formation of MIST teams. They will be followed by the

descriptions of recipe library and capability library. Finally, the chapter leads the reader

through some key processes in plan establishment and plan coordination.

3.1 SharedPlans theory in MIST

One of the original motivations of MIST is to implement faithfully SharedPlans. This

section describes aspects of SharedPlans which are and which are not incorporated in

MIST.

SharedPlans is such a very complex theory that it is impossible to have an implemen-

29

tation in which all notations are explicitly represented and all axioms are strictly enforced.

SharedPlans uses meta-predicates, modal operators, recursive definitions which are not

computationally tractable. The authors also admit that SharedPlans is not intended to be

directly implemented by approaches such as theorem proving systems. They suggest that

it is rather be used as specification for agent design. MIST employs the definitions of full

SharedPlans and partial SharedPlans to decide whether a team has a plan (SharedPlan)

or not. Whether or not a SharedPlan is established is extremely important for an agent

as he must form appropriate intentions towards constitute sub-actions. MIST, however,

does not directly implement all the axioms of SharedPlans as they cannot be efficiently

enforced in an automatic manners.

SharedPlans does not address computational issues directly. For example, the issues

of what and when to communicate, what and how to monitor group performance, when

and how to repair plans are not addressed. Furthermore, although the SharedPlans theory

provides definitions for full SharedPlans and partial SharedPlans, it does not indicate how

they can be achieved. In particular, how mutual beliefs could be attained is not actually

specified. Thus, an implementation of SharedPlans needs to address issues which are

absent in the SharedPlans formalism. How MIST handles those issues will be discussed in

later sections of this chapter.

3.2 Language and Platform

MIST is developed on top of JACK; none of the teamwork features of JACKTeams are

used. More precisely, the components used are agent, plan, event, belief set, capability.

Components provided in JACKTeams such as team, teamplan, team data, role are not

used at all. The only extension of JACK employed in MIST is the @parallel statement

and ParallelMonitor class. Both @parallel statements and ParallelMonitor are also used

in JACKTeams. However, the usage of parallel mechanism in JACKTeams are quite

different from our usage. In JACKTeams, @parallel statements are used in team plans to

assign several subtasks to some team members to execute them in parallel. In MIST, each

30

individual agent might use @parallel statements to tell itself to handle several tasks in

parallel. Some parts of MIST are written in Java such as the recipe and capability parsers.

Both Java components and other components are compiled using the JACK compiler.

3.3 Team structure and team formation

MIST supports the building of nested hierarchical teams. Each team can consist of several

individual agents or sub-teams or both individual agents and sub-teams. Each agent can

participate in different teams and perform various roles at the same time. There is no

restriction on the structure of teams.

Each team has a team leader which bears several extra duties in team activities. The

team leader is responsible for initiating the group efforts in establishing mutual beliefs and

commitments. He is also responsible for receiving, synthesising suggestions and making

group decisions. The team leader is also in charge of monitoring the success or failure of

team activities. The team leader has the obligation to notify other team members once he

believes the joint activity has come to an end (either success or failure). In addition, the

team leader acts as a representative of the team to the rest of the world. He will report the

result of his team’s joint activity to whoever needs the information in the outside world.

Similarly, he will notify his team members if he detects an event affecting the plan in the

outside world.

The team leader can be determined in one of the following two ways. In the first

situation, if an agent sees the need for a group of agents, which includes himself, to

participate in a joint activity, he will initiate the activity and volunteer himself as the

team leader. In the second way, if an existing team leader sees the need of forming a

sub-team of agents to execute a sub-action, he will randomly assign the team leader role

to one of the agents in the new sub-team. The team leader of the parent action might not

necessarily be the leader of the new sub-team even when he is part of the new sub-team.

Team formation is done dynamically. When an agent sees the need of executing a joint

action, he chooses a group of agents which are potentially capable of executing the action.

31

His decision about which group to choose is based on his own knowledge of teammates’

capabilities. He will sends messages to those agents requesting them to join group activity.

The team is formed once everyone confirms their commitment.

Team organisation can be done in a top down fashion. This means that a team for a

super-action is formed before sub-teams for some sub-actions are established. In seeking

for a solution for the super-action, team members might discover the need of forming sub-

teams to execute some of the sub-actions. Only in those situations will new sub-teams be

formed.

3.4 Recipe library

The recipe library is a collection of recipes. In MIST, recipes are referenced by their unique

names. Each agent has his own recipe library, and the recipe libraries of different agents

are not necessarily identical. For instance, recipe library of an agent might contain some

recipes which are not included in those of others. However, recipes referred by the same

name in different recipe libraries must be exactly the same. This is to ensure that recipes

can be identified by their names across all agents. In other words, it is enough for agents

to communicate the names of the recipes only.

In MIST, the recipe library is initiated from a predefined database, more specifically,

from a text file. The recipe library tends to be static and cannot be updated at run time.

However, it should not be used as a characteristic of our system. With some more effort,

the recipe library could be made dynamic. That means recipe library would be able to be

updated and it would reflect the learning capability of agents.

3.4.1 Recipe

Each recipe stores enough information for how to achieve some actions. Every recipe

declares what actions they support. In addition, each recipe states its sub-actions and the

interdependencies between them. The interdependencies here could be constraints and

32

precedences of actions. The interdependencies of sub-actions will be discussed in more

details shortly. Each recipe also contains information about roles. Using roles is just

a convenient way of grouping actions which must be performed by the same agent or

sub-team. Finally, each recipe defines its success or failure conditions.

3.4.2 Recipe format

In order to understand the capability of the language used to define recipes, it is necessary

to explain the format of recipes. The recipe library is initialised by reading a file containing

a list of recipes. Each line of the recipe description is one of the followings.

recipeName => supportAction1, supportAction2, ..., supportActionn (1)

SUBACTIONS : subaction1, subaction2, ..., subactionm (2)

SUCCEED WHEN : DependencyExpression (3)

roleName :: subactionk1
, subactionk2

, ..., subactionkl
(4)

subactionh := DependencyExpression (5)

The minimum description of a recipe will contains at least the first three lines above.

The first line of each recipe (1) tells us what actions the recipe supports. The next line (2)

lists all the sub-actions contained in the recipe. The third line (3) expresses the success

condition of the recipe. In other words, the third line tells us when the execution of the

recipe would be considered successful. This would depend on the success or failure of some

of its sub-actions. The format and capability of dependency expressions will be described

in more detail below.

The first three lines are followed by any number of lines of the format in (4) or (5). A

line in the format (4) describes a role with the role name followed by some sub-actions in

the role. Using roles is just a convenient way to constrain that some sub-actions must be

performed together by one agent or a sub-team of agents. A line written in the format (5)

describes the starting condition for a sub action. The formula tells us that the sub-action

on the left hand side should start when the conditions about some events in the right hand

side are met.

33

Grammar of Dependency Expression

The dependency expressions are generated by the following grammar.

DependencyExpression -> “(” DependencyExpression “)”

DependencyExpression -> DependencyExpression “+” DependencyExpression

DependencyExpression -> DependencyExpression “*” DependencyExpression

DependencyExpression -> Time “:” Event | Time | Event

Event -> EventName “@” EventType | EventName

Time -> NUMBER

EventName -> STRING

EventType -> “SUSSCESS” | “FAILURE” | “STOP”

Semantics of Dependency Expression

• Expr1 + Expr2 is satisfied iff either Expr1 or Expr2 is satisfied.

• Expr1 * Expr2 is satisfied iff both Expr1 and Expr2 are satisfied.

• Time : Event is satisfied iff the event Event has occurred and since then the amount

of time Time has elapsed.

• Time is just a special case of Time:Event when Event is empty.

• Event is another special case of Time:Event when Time is 0.

• EventName @ SUCCESS is satisfied if the the event with the name EventName

has finished successfully. Similarly, EventName @ FAILURE is true when the event

EventName has finished in failure. EventName @ STOP is true when either Event-

Name @ FAILURE or EventName @ SUCCESS is true.

• EventName is a short form of EventName @ SUCCESS.

34

Example of a Recipe

Consider the following simple recipe example:

ScoutMoveRecipe => MoveToBattleField (6)

SUBACTIONS: Scouting,Scouting2,Moving,BuildingBridge,PumpingFuel (7)

SUCCEED WHEN: Moving @ SUCCESS (8)

MainTroopRole :: Moving, BuildingBridge (9)

ScoutingRole :: PumpingFuel, Scouting (10)

Moving := 84600:BuildingBridge * (Scouting + Scouting2) (11)

Scouting := PumpingFuel * SunRise (12)

Scouting2 := Scouting@FAILURE (13)

Figure 3.1 is a graph representation of the recipe ScoutMoveRecipe described above.

However, the figure only provides partly the information contained in the recipe. It depicts

the interdependencies of the sub-actions.

Despite being simple, the above example illustrates several interesting points of recipes.

The first line (6) tells us that the recipe name is ScoutMoveRecipe and it supports the

action MoveToBattleField. The second line reveals all the sub-actions of the recipe. The

sub-actions are Scouting, Scouting2, Moving, BuildingBridge, and PumpingFuel. It is

worth mentioning that sub-actions in a recipe might not be basic actions. For example,

the sub-action BuildingBridge might be a complex action. There might be several recipes

for the action BuildingBridge alone.

The third line (8) expresses that the recipe is considered successfully executed if the

sub-action Moving is executed successfully. Notice that the success condition is expressed

solely in terms of the success of the sub-action Moving. This is because the main aim of the

action MoveToBattleField is to move the majority troops to the battle field. The action

would still be regarded successful even though some scouting helicopters are shot down.

However, it is not quite true to say that the success of the recipe is purely dependent on

the Moving action because Moving, in turn, relies on other events.

35

BuildingBridge PumpingFuel

Moving

Scouting

Scouting2

 succeeds

 fails succeeds

 succeeds
AND

 succeeds

OR

SUCCESS

succeeds

Figure 3.1: Sub-action interdependencies in ScoutMoveRecipe recipe

The next two lines (9) and (10) group some sub-actions together to form roles. Ba-

sically, line (9) states that Moving and BuildingBridge must be done by the same agent

or sub-team. Similarly, line (10) forces whoever does the Scouting sub-action to do the

sub-action PumpingFuel as well.

Line (11) expresses the starting condition of the action Moving. Moving should only

be executed when at least one of the two scouting actions is successful and at least one

day after the construction of the bridge is done. Obviously, it is not safe to move all the

troops from the base to the battle field without having successfully scouted the moving

path. Therefore, the Moving sub-action should wait for the scouting activity. Moreover,

a bridge must be built to help the troops cross the river. That is why Moving cannot be

done before the bridge is built. In addition, it is wise to let the team rest for as least one

day after building the bridge.

Line (12) put constraints on the starting condition of Scouting. Scouting must be done

after enough fuel has been filled and after SunRise. Note that SunRise is not one of the

sub-actions, it is actually an external event.

36

The last line (13) illustrates an interesting point. The sub-action Scouting2 should

only be performed if the action Scouting cannot be successfully executed. This shows that

the language used to describe recipes is rich enough to express the repair strategy for a

recipe. This feature is very useful as it makes the writing of complex recipes possible.

3.5 Capability beliefs

Each agent maintains his own beliefs about the capabilities of himself and other agents.

Like other belief sets, the capability beliefs of each individual can be incorrect but must not

be inconsistent. For example, agent Bob might believe that Alice can cook roast chicken

while Alice, in fact, cannot. Bob cannot both believe Alice can cook roast chicken and

Alice cannot cook roast chicken at the same time. Furthermore, the capability belief set

must be consistent with other belief sets. For instance, Bob cannot believe that Alice can

cook roast chicken at 5pm and, at the same time, believes Alice can cook pizza at 5pm

while believing that these two actions cannot be done in parallel by any single person.

In MIST, each agent is created with some initial beliefs about himself and others. Those

initial beliefs are read in from text files. Those inborn beliefs can certainly be different

for different agents. Unlike recipe libraries which tend to stay static, capability beliefs can

be updated as agents have more and more experience. MIST employs a simple learning

mechanism here. If the agent sees someone or a group of agents that can successfully

execute an action, he would add that fact into his capability belief set. Conversely, if he

notices some agents are struggling with a particular action, he would remove his belief

about those agents’ capability in doing the action if he did believe in them.

3.6 Establishment of SharedPlans

This section describes the coordination mechanism among team members to establish

SharedPlans. To work effectively in a team, agents need to commit themselves to the team

activity and supporting others. Communication is a means to share information, establish

37

mutual beliefs, and reach group decisions. This section assumes all team members have

been identified and they all have received requests to join the team. Team formation has

been described in Section 3.3.

During the plan establishment phase, the team must establish mutual belief that all

intending to join the group do the requested action. Then they must determine a common

recipe that the group can execute. After that, the team must figure out what actions need

to be done and who is going to do what. Finally, the group must establish mutual beliefs

that all sub-actions are either at-least-partially-resolved or unresolved. Figure 3.2 displays

the interaction diagram between the team leader and another team member. The following

sub-sections will step more carefully through these processes. But first, we discuss how

mutual belief can be achieved.

3.6.1 Attaining mutual belief

Although the concept of mutual belief is widely used in SharedPlans, no indication for how

mutual beliefs can be achieved in practice is provided. The definition of mutual belief in

section 2.1.4 is not an approach for obtaining mutual beliefs. In reality, reasoning agents

(including humans) obtain mutual belief based on making additional assumptions about

the environment.

In our system, we make some assumptions relating to communication and trust. First,

the communication channel is reliable. In other words, an agent Alice sending a message

to another agent Bob can assume that Bob receives the same message within a reasonable

amount of time after the message is sent. On the contrary, if Bob does not receive any

message from Alice, Bob can assume that Alice did not send him any message. Another

assumption of our system is that an agent can trust and does trust other agents’ words

about their beliefs. In other words, Alice would trust what Bob says about Bob’s beliefs and

Bob believes that Alice trusts what he tells her about his beliefs. The above assumption

does not require total trust of one agent in another agents’ abilities. For instance, the fact

that Bob sends a message “I can do α” to Alice does not entail that Alice believes Bob can

38

Team leader Any team member

Confirm joining the team

Announce everyone join the team

Propose a recipe

Announce a chosen recipe

Propose roles

Announce role assignments

Shared plans established
Perform assigned roles,

Engage in finding subgroup
 for unassigned roles

Shared plans established
Perform assigned roles,

Engage in finding subgroup
for unassigned roles,

Perform other leader’s roles

Confirm the role assignments are OK

Announce everyone like the role assignments

Like the recipe or not

Confirm everyone likes the recipe

Figure 3.2: Message exchanged in plan establishment

39

do α. What the above assumption is saying is that Alice would believe that Bob believes

Bob can do α.

With the assistance of the above assumptions, from the point of view of an individual

agent, mutual belief of a group about a proposition α can be achieved if:

1. He, himself, believes in α.

2. He tells everyone that he believes in α. Moreover, in every message he sends, he

includes a list of recipients to whom he sends the same message, and the list includes

everyone in the group.

3. He is told by each other member of the group that they believe in α. Moreover, the

list of recipients of each message which he receives contains everyone in the group.

The conditions for obtaining mutual belief can further be simplified with the exploita-

tion of the team leader. Thus, from the point of view of an individual agent, mutual belief

about a proposition α can be achieved if:

1. He, himself, believes in α.

2. He tells the team leader that he believes in α.

3. He is told by the team leader that everyone believes in α.

3.6.2 Committing to group activity

Upon receiving a request to join in a team activity, each agent needs to confirm if he wants

to join it or not. He needs to send a confirmation or a rejection message to the team leader.

Meanwhile, the team leader waits for messages from everyone. There is a time limit for

this activity. In other words, the team leader will not wait longer than a certain timeout

period. Within the set timeout, if everyone confirms their commitment, the leader will

send messages to the others to announce that the team commitment has been established.

In contrast, if anyone refuses to participate in the team activity or fails to respond within

the timeout period, the leader will broadcast termination messages instead.

40

This activity is to establish the mutual belief that everyone intends that the group will

do the the joint action (a requirement of Partial SharedPlans). The team leader acts as a

facilitator to establish the mutual belief. From the point of view of an individual agent,

mutual beliefs about the group commitment of executing the joint action are considered

attained when he/she receives the confirmation message from the team leader.

3.6.3 Deciding on a common recipe

Having received the confirmation message from the leader about the team commitment,

each agent now has the option of suggesting a recipe to be used by the whole team. As

in establishing the team commitment, each agent needs to send a message containing the

name of his proposed recipe to the leader agent. Again, the leader only accepts recipes

proposed within a timeout period. The SharedPlan would fail if no recipe is proposed

during that time. In this case, the team leader will send a termination message to everyone

in the group. However, if more than one recipe is proposed, the team leader must decide

which one will be used by the whole group. In MIST, the team leader is programmed to

pick a random recipe among all proposed ones.

Having decided on a common recipe, the team leader will communicate his decision to

every other team member. Upon hearing the decision from the leader, other agents must

reply to say if they have any problem with the proposed recipe. Once more, there is a time

limit for this activity. The shared activity will only be continued if positive replies from all

other team members reach the leader on time. Otherwise, the plan fails and a termination

message will be broadcast. In the case that the leader believes everyone agrees to the

proposed recipe, he will announce this information and the mutual belief that everyone

commits to the recipe is established. Any agent who receives the confirmation message

from the team leader will believe that the team has a mutual belief that the proposed

recipe has been selected‘. This process is to satisfy the second condition in the definition

of Partial SharedPlans.

41

3.6.4 Resolving sub-actions

Once mutual belief in the applicability of the proposed recipe has been established, agents

can now propose what they can do and what they would like to do. They register their

capabilities and interests to the team leader. The team leader continues to accept interest

registration until either all team members have registered or until the timeout period has

elapsed. After the registration process has finished, the team leader examines the interests

of agents for each role. Some roles might not receive any interest at all while some other

might be volunteered by more than one agent. The team leader will have the honours

and responsibility to decide one agent for any role which receives more than one interest.

Once all necessary decisions have been made, the team leader sends a message to everyone

detailing the role-agent allocations. Obviously, some roles might not be filled yet since no

one volunteers.

Upon receiving the message about the role allocation from the team leader, each agent

will examine the leader’s decision to see if the proposed scheme is appropriate and feasible.

Not only does each agent need to consider the roles which are assigned to him, but also

the capabilities of others in executing their allocated actions. Each agent then either

needs to confirm or reject the proposal. If every agent confirms their agreements on the

proposed scheme within a certain timeout period, the leader agent will broadcast that fact

to everyone. The role allocation proposal from the team leader might not contain all sub-

actions of the recipe because some roles, and therefore sub-actions, are not volunteered by

any agent at all. For each unassigned role or sub-action, each agent will need to engage

in one team activity to find a sub-team for that role or action. Having done all of those,

each agent would believe that each action in the recipe is either at-least-partially resolved

or unresolved. Thus, the third condition of the Partial SharedPlans is satisfied.

From the point of view of an agent, a SharedPlan is formed when he believes that

the three conditions of the partial SharedPlan definition have been met. He then forms

appropriate intentions to execute or even execute his allocated sub-actions if he needs to

do them straight away. The agent might believe the plan is established even though some

42

sub-actions or roles have not been allocated to anyone yet. In this case, the plan is still

partial and agents need to invoke some processes to elaborate the unresolved sub-actions.

Agents do not wait until the plan is fully elaborated, in fact, elaboration and execution

can be done in parallel.

3.6.5 Finding sub-teams for unfilled roles

The process of finding a sub-team for an unresolved sub-action is quite similar to the

process of finding a common recipe for the joint goal. Each agent starts the finding sub-

team process by suggesting a sub-group for the requested action. His suggestion would be

based on his own knowledge and beliefs about the capabilities of other agents. If he thinks

a sub-group of agents could get together to perform the requested action, he would suggest

them to do so by sending a suggestion message to the team leader. The team leader, once

again, accepts suggestions in a certain period of time. When all agents have made their

suggestions or the timeout has passed, the leader agent will consider all the suggestions

and decide a group to take responsibility for executing the sub-action. Not only does the

leader have final say about the chosen sub-group, he also assigns the leader role to one of

the members in the sub-group. After finalising his decisions, the team leader informs the

other agents about his decisions and suggest members of the chosen sub-group to form a

team. In MIST, the team leader would pick a sub-group randomly among all proposed

sub-groups and assign the leader role to a random agent in the sub-group.

By announcing the members of the chosen sub-group, the team leader passes the re-

sponsibility of executing the sub-action to them. Members of the chosen sub-group need

to get together to form a team to perform the sub-action. Agents who are not part of

the chosen sub-group are not required to engage in resolving the sub-action any more. In

fact, those agents will not care how the sub-action is executed. All they need to believe is

the commitment and capability of the newly formed sub-team to handle their assignment.

Though not very interested in the detailed execution of the sub-team, agents not in the

sub-team occasionally need to exchange information with the sub-team. They do so by

43

communicating with the sub-team leader.

There are situations in which the team leader does not receive any suggestion about

a capable sub-group. In those circumstances, the team leader would request the team to

further elaborate the sub-action. In other words, team members start proposing recipes

for the sub-action. This brings them back to the process of deciding on a common recipe

and allocating roles again.

3.7 Execution of SharedPlans

After a SharedPlan has been established (either full or partial), agents must get ready

to execute their allocated roles. However, there might be interdependencies between sub-

actions and dependencies of the joint action as the whole to some other external factors.

Agents usually need to monitor those dependency in order to execute their sub-actions at

the right time. This section describes the processes which correspond to the intentions of

MIST agents and how the agents coordinate their activity in the execution of SharedPlans.

3.7.1 The intention processes

After an agent believes that a SharedPlan has been established, he will form appropriate

intentions towards his assigned sub-actions. To handle and keep track of intentions, the

agent creates an intention process for every intention he has. The use of intention processes

in MIST exhibits the commitment of agents towards their intended actions. The pseudo-

code of an intention process which corresponds to IntTo(α) (intention to execute α) is

given in Figure 3.3. Action α will be executed when all the pre-conditions of α have been

satisfied unless the intention is revoked earlier. In that case, the intention process which

corresponds to α will be killed and α will not be executed.

The following sections will describe the other statements in the intention processes in

more details.

44

WAIT FOR(command whistle of super action of α);

WAIT FOR(right moment to execute α);

EXECUTE(α);

NOTIFY(people who need info about α);

Figure 3.3: Pseudo-code of an intention process which corresponds to IntTo(α)

3.7.2 The command whistle

Involving in a team activity, each agent is usually assigned several sub-actions. However,

agents can only execute their assigned sub-actions if the starting conditions of the super-

action are satisfied. Therefore, each agent needs to wait for the moment when the super-

action can be started. However, in MIST, instead of having each individual agent explicitly

monitor for the starting condition of the super-action, each agent relies on the team leader.

The team leader has the responsibility to monitor that starting condition and “blow” a

“command whistle” when it believes the action can be started.

The team leader does not tell each individual agent when to do what. The team leader

only notifies its team members about the starting condition of the super-action. It does

not mean that the team members need to execute their allocated sub-actions straight away

after receiving the starting signal from the leader. Each sub-action usually depends on

some other sub-actions and events. Individual agents are solely responsible for monitoring

those events.

To illustrate this point, consider the following example. A team of three soldiers Allan,

Bob and Craig receive the command to destroy the enemy base. Bob is the leader of the

team. They establish a SharedPlan with a recipe that the three of them will attack three

different sides of the enemy base. First, Allan will blast the North side. Five minutes later,

the East side needs to be blown up by Bob. Finally, Craig will bomb the South side 5

minutes after Bob has performed his duty. Thus, they have established a SharedPlan and

now everyone knows what they need to do and they have formed appropriate intentions

45

to perform their assigned tasks. However, none of them can start executing their actions

until they receive the “command whistle” from their team leader, Bob in this case, that

the whole joint action can be started. As the leader of the team, Bob knows that the joint

action can only be started after midnight and after the guards in the watch towers have

fallen asleep. So, Bob would monitor this condition and notify his teammates as soon as

it is satisfied. Upon receiving the “command whistle”, Allan will proceed and blow the

North side of the enemy base. Meanwhile, Craig, receiving the same message, sits idle and

waits for his turn. Thus the “command whistle” only means that the joint action can be

stared; it does not entail that the sub-actions must be executed straight away.

3.7.3 Waiting for the right moment

The starting conditions of sub-actions sometimes depend on some other events. Agents

who are assigned such actions must wait for their starting conditions to be true before

they can start executing them. Agents know the starting conditions of their sub-actions

by looking at the containing recipe, since the containing recipe contains information about

any starting condition of those sub-actions. If, however, the starting conditions of a sub-

action are not described in the recipe, the only thing the agent needs to wait for is the

team leader’s command whistle, as discussed above. In general, agents need to wait for

both the command whistle and the starting conditions of their allocated sub-actions.

The starting conditions of sub-actions are expressed in term of dependency expressions.

From the dependency expressions we can build a dependency tree. There are three types

of node in the dependency tree, namely AND, OR and LEAF nodes. An AND node

succeeds when all of its branches succeeds and fails as soon as one of them fails. An OR

node succeeds as soon as one of them succeeds and fails if all fail. A LEAF node succeeds

when the event represented by that node occurs. The trees are not necessary binary trees.

The AND and OR nodes can have as many branches as they need.

Consider the recipe ScoutMoveRec from Section 3.4.2 again. Whoever does the sub-

action Moving must wait for the success of the execution of BuildingBridge and one of the

46

scouting actions. However, that agent will not wait for the termination of the sub-action

Scouting2 if she knows the sub-action Scouting is executed successfully. If the sub-action

BuildingBridge finishes in failure, the agent will drop its intention to do Moving and

stop waiting for the execution of both scouting actions. The Moving action will never be

executed and will be reported as a failure. The dependency tree of Moving is depicted in

Figure 3.4.

0:AND

0:OR84600:BuildingBridge

0:Scouting 0:Scouting2

Figure 3.4: Dependency Tree of Moving

3.7.4 Reporting execution results

After executing an action, the agent will report the result to whoever needs the information.

The list of those people can be obtained by examining the interdependencies between sub-

actions in the containing recipe. For example, consider the recipe ScoutMoveRec from

Section 3.4.2 again. The actor of Scouting would know that other agents who intend to

do Moving or Scouting2 require information about the execution of Scouting.

An agent only reports an action’s execution result to actors of actions which depend

directly on that action. An action’s directly dependent actions are ones which immedi-

ately follows that action in the dependency diagram. The dependency diagram of recipe

ScoutMoveRec is given in Figure 3.1. As illustrated in the diagram, the Moving action is

47

not directly dependent on PumpingFuel. Therefore, actor of Moving will not be notified

when PumpingFuel is finished.

An agent only reports the execution result of an action to responsible agents of de-

pendent actions. The responsible agent of a group level action is the leader of the team

which the action is assigned to. The responsible agent of an individual level action is the

assigned actor of that action. For instance, the actor of action Scouting only needs to

report to the leaders of Moving an Scouting2 teams once he finishes executing Scouting.

There is a special case in which one of dependent actions of an action is the success of

the super-action. In this case, the agent who will be reported to is the team leader of the

super-action. In the above example, the team leader of the action MoveToBattleField will

get notified when the action Moving is finished. It is worth mentioning that an action is

considered terminated if one of the following situations occurs:

1. The action is executed successfully.

2. The action is executed but the desired goal is not achieved.

3. The intention to execute the action is dropped because the starting condition of that

action will never be satisfied.

3.7.5 Monitoring

Communication is not the only way to obtain information about the execution of other

actions. It is not necessary to have an agent wait indefinitely long for the communication

messages from its peer fellows. Agents can be programmed to encapsulate monitoring and

other reasoning capabilities. Consider the sub-team of sub-action Scouting2 in the above

recipe again, they might have other ways to reason about the execution of Scouting. For

example, they might know that Scouting team cannot report back to them if all members

in that team are shot down. Therefore, they might believes that action Scouting fails after

a long waiting period. Having believed that, the Scouting2 team would fly off the base

and perform the backup plan.

48

MoveToBattleField team
Leader: A

PumpingFueld &
Scouting team

Leader: B

Scouting2 team
Leader: C

BuildingBridge &
Moving team

Leader: D

Figure 3.5: Team structure for action MoveToBattleField using recipe ScoutMoveRec

Furthermore, there are events which are external to the control of the whole team.

Agents whose actions depend on such kind of events need to do the monitoring themselves.

In the above example, the Scouting team would need to keep track of when SunRise occurs.

A monitoring capability is essential for every agent. However, what agents should

monitor and what agents can monitor are really domain dependent. As a consequence,

monitoring activities are not included in the core part of MIST. However, using the JACK

plan language, monitoring activities can be added to agents developed using MIST.

3.8 Responsibilities of team leaders

In order to discuss the roles of team leaders, let us consider the recipe ScoutMoveRec for

the action MoveToBattleField again, and suppose after the process of role allocation, the

structure of the team is as shown in Figure 3.5. The team consists of three sub-teams with

the leaders B, C and D. The leader of the super-action MoveToBattleField is A.

The responsibility of the leader agent to other agents in its team is to inform them

when the status of the joint action changes. It includes when the joint action can be

started (command whistle), when it has terminated and when it is no longer relevant. For

example, suppose agent A believes that the action MoveToBattleField is unachievable due

49

to some problems originated in building the bridge, agent A would notify all members in the

MoveToBattleField team about that fact. Receiving that information, other agents who

are executing or intending to execute some sub-actions would abort their missions or their

intentions to pursue them. For example, if the Scouting team receives that information

while they are on the way to the battle field, they would turn back to the base since

Scouting is no longer necessary.

The leader of a sub-team is the representative of the team in communication with the

upper level team. For example, when the action Scouting is executed successfully, agent

B is the only person who needs to report that back to the agents in the upper-level team,

the team which is in charge of executing MoveToBattleField action. In this situation, B

would report the success of Scouting to both C and D which are the leaders of Scouting2

team and Moving team respectively. These two leaders, in turn, will notify members in

their groups accordingly.

3.9 Execution of individual actions

When it comes to individual activities, actions are handled by JACK plans. Agents engage

in group activity to resolve complex group actions by dividing them to simpler individ-

ual ones. The establishment of SharedPlans and the coordination of group members are

processed automatically in the core part of MIST. The execution of individual actions,

however, are domain dependent. As a result of that, individual actions cannot be handled

in an uniform way. In fact, domain dependent JACK plans must be written to deal with

individual actions.

3.10 Summary

In summary, MIST is a JACK implementation of SharedPlans which also addresses other

computational issues such as team formation and team coordination. This chapter has

described the components of MIST and processes which MIST agents undergo in estab-

50

lishing and executing SharedPlans. In the next chapter, we will discuss how MIST can be

used in developing team-based applications.

51

Chapter 4

Development of a specific application

This chapter illustrates the use of MIST in developing domain specific applications. First,

it describes a simple simulation in the military domain. The second section explains all

the steps in the development process. The third section discusses teamwork in action.

4.1 A Simulation

A simple simulation in a military domain is constructed. In the simulation, there are two

forces the allies and their enemies. The allies have four members: Agent001, Agent002,

Agent003 and Agent004. Agent001 is a helicopter agent which is equipped with a machine

gun. Agent003 and Agent004 are two other helicopter agents but they are equipped with

much heavier weapons such as anti-tank rockets. Any helicopter can perform scouting

activity. However, only Agent003 and Agent004 are capable of destroying enemy troops

provided there are not many of them. Agent002 is a single agent but it represent a

infantry platoon of soldiers which are capable of building bridges and moving between

point and point on the ground. There might be some enemy troops and their capabilities

and quantity are unknown for the allies. Helicopters agents have vision sensors which

provide the number of enemy troops in the limited region surrounding them. They can

also detect whether the they reach the holding point not not. The simulation is depicted

52

in Figure 4.1. The allies can communicate with each other by radio signals.

River
EnemyAgent002

Agent001

Agent003

Agent004

 Holding
Point

Figure 4.1: A simulation in military domain

4.2 Development

Our task is to develop a team of four agents which corresponds to Agent001, Agent002,

Agent003 and Agent004. The agents must be able to coordinate smoothly together and

deliver their mission. This section describes the steps involving in developing such a team.

4.2.1 The mission

The mission of the allies is to get the infantry platoon, Agent002, to the holding point

which is next to battle field. It is acceptable for some agents to sacrifice for this mission.

That means the mission is considered successful when Agent002 get to the holding point

even though some other agents are shot down. Agent002 cannot move to the holding point

straight away as it might be dangerous if they encounter some strong enemy force on the

way. Thus, it is always wise to have the path scouted in advance.

4.2.2 Creating agents

Creating agents is the first step where some agent classes in JACK must be defined. Each

agent must have teamwork skills called TeamPlayer capability. TeamPlayer is the min-

53

imum desired skills which each agent needs for team coordination in MIST. TeamPlayer

capability is a predefined component of MIST’s core so agent classes only need to include

it in their declarations if they want their agents to have that capability. Apart from Team-

Player capability, agent classes are almost empty. We need to fill them with domain skills

in the later steps of the development. Then, four agents Agent001, Agent002, Agent003

and Agent004 must be instantiated as instances of their agent classes.

4.2.3 Creating knowledge about capabilities of agents

4

Agent001 Scouting PumpingFuel

Agent002 Moving BuildingBridge

Agent003 Heli2 Heli1 RightWingFighting PumpingFuel

Agent004 Heli1 LeftWingFighting PackingAmmo

3

MovingToBattleField Agent001:Agent002:Agent003:Agent004

Scouting2 Agent003:Agent004

DestroyingEnemy Agent003:Agent004

Figure 4.2: Content of CapInit.txt file

The second development step is to initialise the agents’ knowledge about others’ ca-

pabilities. As discussed previously, this can be done by creating a text file for each agent

detailing what beliefs the agent hold towards other agents. For simplicity reason, we cre-

ate only one text file CapInit.txt which will be shared by all agents. The content of the

file is given in Figure 4.2. The CapInit.txt file has two parts. The first part states the

capabilities of agents. The second part specifies the capabilities of groups of agents.

54

4.2.4 Creating recipe library

In this step, one must create a text file called RecipeInit.txt for each agent listing all the

recipes which should be contained in the recipe library of the agent. For simplicity reason,

only one RecipeInit.txt file is created and it is shared by all agents. The content of that

file is described in Figure 4.3. There are 3 available recipes for three group actions. The

syntax and semantics of recipes have been discussed in section 3.4.2.

ScoutMoveRec => MovingToBattleField

SUBACTIONS: Scouting, Scouting2, Moving, BuildingBridge, PumpingFuel

SUCCEED_WHEN: Moving @ SUCCESS

MainTroopRole :: Moving, BuildingBridge

ScoutingRole :: PumpingFuel, Scouting

Moving := 5000:BuildingBridge * (Scouting + Scouting2)

Scouting:= PumpingFuel * SunRise

Scouting2 := Scouting@FAILURE

===========

TwoFightingHeliRec => DestroyingEnemy

SUBACTIONS : LeftWingFighting, RightWingFighting

SUCCEED_WHEN: LeftWingFighting * RightWingFighting

===========

TwoScoutingHeliRec => Scouting2

SUBACTIONS: PackingAmmo, Heli1, Heli2

SUCCEED_WHEN: Heli1 + Heli2

Heli2 := PackingAmmo

Heli1 := PackingAmmo

Figure 4.3: Content of RecipeInit.txt file

55

4.2.5 Writing code for individual domain-specific actions

Finally, one must provide instructions for domain-specific actions such as Scouting, Pump-

ingFuel and PackingAmmo. The domain-specific instructions are written as JACK plans.

Figure 4.4 shows the JACK plan for Scouting action. Basically, whoever uses plan Scout-

ingPlan to execute action Scouting will keep moving forward to the holding point until

it runs out of fuel or if it sees some enemy troops. The plan is considered successful

if the while loop exits normally. The plan is considered failed if the statement false is

encountered. The agent will abort the scouting action and return to the home base if

he sees some enemy troops. As can be seen from the diagram, no explicit instructions

are required to tell what the agent needs to do when the Scouting action is terminated.

This is automatically taken care by MIST. MIST will report the information to whoever it

needs to report to. Thus, MIST reduces the task of developers in keeping track of agents’

responsibilities in team activities.

4.3 Teamwork in action

This section describes how agents coordinate when the system is in action.

4.3.1 Establishing SharedPlans

At the start, the top chief general (the user) commands Agent002 to lead a group consisting

of Agent002 and three other agents Agent001, Agent003, and Agent004 to perform the

action MovingToBattleField. Agent002 will then pass the command to all other agents.

Upon receiving the requests, agents start elaborating a plan for their joint action.

They confirm their engagement in the activity, propose a recipe, and propose roles they

want to perform. After that, a partial SharedPlan is formed for MovingToBattleField and

Agent002 is going to execute BuildingBridge and Moving while Agent001 takes responsi-

bility of PumpingFuel and Scouting. The action Scouting2 is unresolved as no single agent

is capable of doing it. The whole team then engage in finding a sub-team for Scouting2

56

plan ScoutingPlan extends Plan{

#handles event ScoutingEv scoutingEv;

#uses interface HeliFighter self;

#posts event Returning2BaseEv r2bEv;

body(){

String agentName = self.getAgentName();

int fuel = 1000;

while (true){

//Out of fuel, cannot fly further

if (fuel < 0) false;

//Reach holding point, finish scouting

if (BattleField.reachMeetingPoint(agentName))

break;

//See some enemy troops, cannot continue

if (BattleField.getNoEnemyTroops(agentName) > 0){

@post(r2bEv.return2base("Now");

false;

}

BattleField.moveForward(agentName);

fuel--;

}

}

}

Figure 4.4: Domain-specific instruction for Scouting

57

Agent001, Agent002, Agent003, Agent004:
MovingToBattleField

Agent002:
Moving,BuildingBridge

Agent001:
PumpingFuel, Scouting

Agent003, Agent004:
Scouting2

Leader:
Agent002

Agent004:
PackingAmmo, Heli1

Agent003:
Heli2

Leader:
Agent004

Figure 4.5: Team structure and role allocation

and they find Agent003 and Agent004. From that time onwards, Scouting2 is the respon-

sibility of Agent003 and Agent004, they will need to find a common recipe and form a

SharedPlan to execute it. Figure 4.5 shows the team structure and role allocation after

they have a full SharedPlan.

4.3.2 Execution of SharedPlans

The execution of individual actions start right after the collaborative plan is formed.

Agent002 starts executing BuildingBridge while Agent001 starts pumping fuel to his he-

licopter and flying towards the holding point. After a while, Agent002 finishes building

bridge, they rest and wait for the path being scouted before moving to the holding point.

However, Scouting fails as Agent001 encounters some enemy troops on the way. He aborts

the mission and notifies that to Agent002 as well as the leader of Scouting2 group which

is Agent004. Agent004, in turn, notifies Agent003 that the backup plan can be started.

Agent004 then goes packing some ammo. After loading enough heavy ammo and anti-tank

rockets, both helicopters fly to the holding point to perform the action Scouting2. How-

ever, as they are flying toward the holding point, they discover some enemy tanks and see

the need of executing DestroyingEnemy. Thus, they suspend their currently executing ac-

58

tions Heli1 and Heli2 and form a SharedPlan to execute DestroyingEnemy instead. After

the enemy force has been destroyed, they resume their scouting activity and fly towards

the holding point again. When they reach the holding point, they report to Agent002.

Agent002 then match to the holding point. Upon reaching the holding point, Agent002

send messages to other agents to conclude that the joint activity MovingToBattleField is

executed successfully.

59

Chapter 5

Comparison with other frameworks

This chapter compares MIST with other related computational frameworks. First, it dis-

cusses the differences between MIST and JACKTeams. That is followed by the comparison

between MIST and STEAM.

5.1 MIST versus JACKTeams

The are many differences between MIST and JACKTeams. This section will compare them

side by side in the following aspects: team structure, team formation, plan establishment,

plan execution, failure recovery, application development and system performance. We

also discuss the expressiveness of teamplan language of JACKTeams and recipe language

of MIST.

5.1.1 Team structure and agents’ relationships

Although both MIST and JACKTeams supports the creation of hierarchical team struc-

ture, there are some differences between the two. First, the use of the team agent is a

distinctive approach of JACKTeams. The team agent has excessive power and duty but he

is not among the people who do the actual work. Meanwhile, the team leader in MIST is

one of the team members. The team leader has some extra duties but not as many as the

60

team agent of JACKTeams. Teams in MIST are more decentralised than those of JACK-

Teams. In JACKTeams, agents only need to know the team agent and the relationships

between them are many-to-one relationships. In JACKTeams, teams have team beliefs

and team intentions. There are no such things in MIST. In MIST, there are only mutual

beliefs which are beliefs about beliefs.

5.1.2 Team formation and plan establishment

The are many dissimilarities in the ways teams and plans are formed between the two

systems. In JACKTeams, the team formation and plan establishment are completely

handled by the team agent. First the team agent picks a teamplan and and try to locate

agents who can performs teamplan’s roles. A team with a plan is considered established

once the team agent identifies actors for the roles in the teamplan. Thus there is no need for

communication during the establishment of plans. In contrast, establishing SharedPlans

in MIST is much more complicated. Agents have to exchange messages to request and

confirm their involvement in the group activities as well as to establish certain mutual

beliefs. Also, MIST agents are given opportunities to propose group recipes and roles which

they would like to perform; yet, the final decisions are in the hands of the team leader.

MIST SharedPlans could be partial while there is no equivalent concept for teamplans of

JACKTeams.

5.1.3 Plan execution

In the execution of plans, the way MIST addresses monitoring and coordination is differ-

ent from the way JACKTeams does. JACKTeams solves those issues using a centralised

approach in which the team agent handle everything. In JACKTeams, every agent acts

and only acts when receiving requests from the team agent. There is absolutely no need

for agents to monitor and reason about teammates and team activities. Conversely, MIST

agents have more responsibilities, they need to monitor events related to their own actions.

MIST agents have a cooperative attitude and they reason about the other agents. This

61

attitude helps agents to coordinate their activities by communicating when necessary.

5.1.4 Plan failure recovery

There is an interesting distinction between failure recovery mechanisms of the two frame-

works. JACKTeams teams do not form and reason about recovery plans until failure

occurs. Unlike JACKTeams, MIST teams adopt appropriate intentions to the backup

plans even when nothing has gone wrong. Consider the situation when two agents Alice

and Bob want to go to Melbourne together. Since Melbourne is far away, they prefer to fly

rather than to go by train. If Alice and Bob are JACKTeams agents, they will not consider

the plan of catching a train unless they have already tried and failed to go there by air.

If, however, Alice and Bob are MIST agents, they would form appropriate intentions and

SharedPlans to catch a train as well as to catch a flight. That means they need to reason

about both the plans at the same time. Of course, they will not catch a train if they have

successfully flown to Melbourne.

5.1.5 Application development

There are not many differences in the ways systems are built from JACKTeams and MIST.

In MIST, one must create agents and provide them with predefined recipes and initial

knowledge about beliefs. Similarly, JACKTeams requires the creation of team agents

with hand-coded teamplans. Capabilities of teams and agents in JACKTeams are also

public knowledge. Thus, the development processes based on JACKTeams and MIST are

principally equivalent.

5.1.6 Performance measure in term of communication

The number of messages exchanged during the execution of a MIST’s plan α is much less

than that number in execution of an equivalent JACKTeams’s teamplan β. Suppose the

total number of actions in each of α and β is N. There are two communication messages

for every action in β. Therefore, the total number of exchanging messages in β is 2N.

62

FlyToTheMoon => FlyToTheMoonEvent

SUBACTIONS : CHECK ENGINE, PUMP FUEL, FLY SPACECRAFT,

MONITOR SPACECRAFT, CALL EARTH CONTROL CENTRE

SUCCEED WHEN: CALL EARTH CONTROL CENTRE @ SUCCESS

Technician :: CHECK ENGINE, PUMP FUEL

MainPilot :: FLY SPACECRAFT, CALL EARTH CONTROL CENTRE

AssistantPilot :: MONITOR SPACECRAFT

PUMP FUEL := 600 : CHECK ENGINE

FLY SPACECRAFT := PUMP FUEL

MONITOR SPACECRAFT := PUMP FUEL

CALL EARTH CONTROL CENTRE :=

FLY SPACECRAFT * MONITOR SPACECRAFT

Figure 5.1: An equivalent recipe of the teamplan in page 15

Meanwhile, the execution of plan α requires at most N + 1 messages since agents only

report the status of their assigned actions to agents who really need the information.

Thus the number of exchanging messages during the execution of α in the worst case

is just half of that number in the execution of β. For instance, consider the teamplan

given in Figure 2.3 and its equivalent MIST recipe given in Figure 5.1. The total number

of messages exchanges are 10 and 4 respectively. If the messages communicated during

the initialisation (the command whistles) and termination period of MIST plans are also

counted, the total number of messages would be 2K + N + 1, where K refers to the

number of agents in the group. That figure is smaller than that of β when N is much

bigger than K.

5.1.7 Expressiveness of plan languages

JACKTeams uses teamplans to express plans for group activities. Meanwhile, MIST uses

group recipes to specify how joint actions could be achieved. It is interesting that the

63

recipe language of MIST is more expressive than that of JACKTeams. This section shows

that there is a MIST’s recipe for every JACKTeams’ teamplan but not vise versa. In this

section we reserve the term teamplan for JACKTeams’ teamplan, and the term recipe to

refer to MIST’s recipe.

Equivalence of recipe and teamplan

A recipe α of MIST is considered equivalent with a teamplan β of JACKTeams if the

following conditions hold:

1. The set of sub-actions of α is the same with the set of sub-actions of β.

2. There is one to one correspondence between roles in α and those in β.

3. The starting condition of each sub-action in α is the same for that of corresponding

sub-action in β.

4. The success condition of α is the same with that of β.

Legal statements of teamplans’ language

Strictly speaking, teamplans can be used to write any program because it is capable of

incorporating full level Java code. By doing so, team agent could indirectly communicate

with other agents by flagging some global variables or doing something similar. However,

we do not consider this type of teamplans. In fact, only @team achieve, @wait for, and

@parallel statements are regarded as legal statements in the bodies of teamplans.

Expressiveness of MIST’s recipes

There is a corresponding recipe for each teamplan. To see that, consider the following

informal proof. Suppose we have a teamplan which consists of some sub-actions. First

of all, it is not hard to create a recipe which contains the same number of sub-actions

and the same number of roles (with the same names). Furthermore, since the dependency

expression of MIST is capable of expressing any boolean combination of events and time,

64

XX => YY

SUBACTIONS : A, B, C, D, E

SUCCEED WHEN: E * D

B := A

C := A

D := C

E := B * C

Figure 5.2: A recipe which teamplans’ language cannot express

one can make the starting condition of a sub-action in the recipe equivalent to the starting

condition of the corresponding sub-action in the teamplan. The success condition of the

recipe can be constructed in the same way. Thus, it is possible to create an equivalent

recipe for every teamplan. For example, consider the teamplan example given in Figure

2.3 on page 15. One equivalent recipe is given in figure 5.1.

Expressiveness of JACKTeams’ teamplans

The language of teamplans in JACKTeams is not as expressive as the language of MIST’s

recipes. Consider the counter example given in Figure 5.2. The recipe consists of five basic

individual sub-actions A, B, C, D and E which can not be divided further. The action A

does not have any constraint so it will be executed first. Both B and C will be executed

in parallel after A succeeds. Action D is performed right after C while E has to wait for B

and C. The recipe is accomplished when both D and E succeed. We will show that there

is no teamplan which could include A, B, C, D, E and preserve the starting conditions of

those actions.

Proof :

Suppose there is a teamplan β which can include all action A, B, C, D, E and preserve

the starting conditions of those actions. From the teamplan β, construct a graph in

the following way. First eliminate all statements in the plan which are different from

65

body(){

@team_achieve(_, a1);

@parallel(SUCCEEDS_WHEN_ONE_SUCCEEDS){

{

@team_achieve(_, a2);

@parallel(SUCCEEDS_WHEN_ALL_SUCCEEDS){

@team_achieve(_, a4);

@team_achieve(_, a5);

@team_achieve(_, a6);

}

@team_achieve(_, a8);

};

{

@team_achieve(_, a3);

@team_achieve(_, a7);

@team_achieve(_, a9);

};

};

@team_achieve(_, a10);

@parallel(SUCCEEDS_WHEN_BLAH_BLAH){

@team_achieve(_, a11);

@team_achieve(_, a12);

};

@team_achieve(_, a13);

}

Figure 5.3: An example of teamplan with nested statements

66

v2

v0

v3

v4

v5

v6

v7

v8

v9

v1

a1

a2
a3

a4
a5 a6 a7

a8 a9

a10

a11
a12

a13

Figure 5.4: Graph for teamplan in Figure5.3

67

@team achieve or @parallel. Each vertex is added for every place in the plan which lies

immediately between the end of a statement and the beginning of another statement at the

first level (statements inside a @parallel statement is considered secondary statements).

Another two special vertexes are added to mark the start and the end of the plan. Each

directed edge for every first level @team achieve statement. Each edge joins two vertexes

which represent the places before and after @team achieve statement which it corresponds

to. The vertexes correspond to the start and the end of a @parallel statement are joined

by edges in which each edge matches one branch of the @parallel statement. Now repeat

the process with every secondary statement inside @parallel statements. Thus, we would

obtain a graph which is similar to the one in Figure 5.4. That figure is constructed from

the teamplan given in figure 5.3 (You might be wondering we do not show the graph for

example given in Figure 5.2. Well, we are trying to prove that no such graph exists). Since

roles are not important

Though not depicted in the graph, each vertex stores hidden information about the

starting condition of the edges originating from it. That starting condition depends on

the parameter of the @parallel statement and the incoming edges. However, there is only

one starting condition at each vertex and it is uniquely determined. Therefore, any two

outgoing edges from any vertex must share the same starting condition.

Now consider the two actions D and E. Since the starting conditions of D and E are

different, their corresponding edges cannot have the same origins. Suppose the correspond-

ing edges of D and E start from vk and vl respectively (vk 6= vl). Since both D and E

depend on action C, vk and vl must have the edge which represents C as incoming edges.

However, that is impossible since each action is represented by exactly one edge and no

edge can end at two different vertexes. Hence, neither does the above type of graph nor

the language of teamplan could express the recipe in the counter example above. That

concludes our proof.

68

5.2 MIST versus STEAM

STEAM is similar to MIST as both are intended to be general flexible frameworks. How-

ever, there are also many distinctions. This section discusses the similarities and differences

between the two.

5.2.1 Platform

For a general system, which platform it is built on does not really matter. However,

for frameworks such as MIST and STEAM, they are worth comparing. As mentioned in

previous chapters, STEAM is developed on Soar while MIST is developed using JACK.

Hence, developing applications from STEAM would require the provision of Soar rules.

Meanwhile, one must create JACK agents and equip them with JACK plans if he is using

MIST to create his systems. The JACK language is very close to Java and is possible of

encapsulate full level Java code. Soar, on the other hand, is closer to a LISP language.

Our assertion is that it is easier to develop agent-based systems on JACK, and programs

written in JACK are probably more comprehensible and manageable than ones written in

Soar. Hence, MIST has an advantage over STEAM.

5.2.2 Theoretical foundations

JointIntention and SharedPlans are theoretical foundations of STEAM and MIST respec-

tively. In STEAM, to execute a team operator, a team must establish joint intention

towards that operator. The joint intention requires agents to jointly commit to the team

operator. That obligates agents to notify their teammates if their copies of the team state

change. Meanwhile, MIST agents establish SharedPlans to achieve a goal based on the

SharedPlans theory. MIST agents will form appropriate intentions once they think they

have SharedPlans. However, MIST agents are not forced to notify their teammates even

when they believe their SharedPlans are over.

69

5.2.3 Representations of mutual beliefs

The way STEAM represents mutual beliefs are significantly different from ours. First,

STEAM assumes that every team has an abstract unique team state. Since there is no

shared memory, each agent maintains its own copy of the team state. STEAM ensures

the consistency between different copies of the team state by restricting the type of mod-

ification operators. Furthermore, communication is required to synchronise the update

of the copies of the team state. MIST agents do maintain information about teams and

their plans (SharedPlans). However, MIST does not explicitly assume the existence of an

unique state of the team. Thus, there is no need for consistency maintenance. Different

team members might have different information about the team and the state of their

plans.

5.2.4 Team structure and team formation

Similar to MIST, STEAM facilitates the building of hierarchical team structure as STEAM

borrows the concept of hierarchical team and goal decomposition from SharedPlans. Yet

there are some differences in team formation. In STEAM, all teams are predefined and

their leaders are predetermined. MIST supports dynamic team formation in a top-down

fashion. Thus, the super-team might be formed before its sub-teams. For a newly formed

team, the team leader is normally chosen at random.

5.2.5 Plan establishment

The processes of establishing plans have several differences. To execute a team operators,

STEAM agents need to establish a joint intention. The team leader initiates the pro-

cess by broadcasting a request message. The joint intention is considered formed when

everyone has broadcast their commitments. Since, MIST teams are not predefined, the

establishment process of SharedPlans is much more complicated. They have to estab-

lish mutual beliefs about group commitment. They have to decide on a common recipe

as well as resolve any sub-action. They also have to engage in activities to address the

70

role-allocation issues. Another difference between MIST and STEAM is the use of team

leader. In STEAM, the team leader only initiates the process of establishing joint inten-

tion. From that point onwards, the team leader has no other privilege or duty. On the

other hand, team leaders in MIST are employed to facilitate the establishment of mutual

beliefs. Everyone in the team communicate with the leader instead of broadcasting their

ideas.

5.2.6 Monitoring

There are some differences in the way STEAM and MIST agents monitors their joint

activities. In STEAM all agents monitor the team operator and they do so independently.

They only notify each other when they think the team operator has come to an end. In a

MIST team, the team leader is responsible for monitoring the success of their SharedPlan.

Other team members are required to help the leader. Consider the following situation.

A team of three agents A, B, and C, with the leader is A, have a collaborative plan to

achieve both X and Y. Thus the success condition of the plan would be: X ∧Y . This type

of information is available in both team operator of STEAM and MIST recipe. If A, B, C

are STEAM agents, they will monitor X ∧ Y independently. Hence, there is situation in

which the group has achieved the joint goal X∧Y but the agents fail to anticipate that. It

can happen when each agent just has partial information about the joint goal X ∧ Y such

as in the case that only B discovers X has been achieved and only C knows that Y has

been achieved. This type of failure would not occur in MIST. If A, B, C are MIST agents,

they will monitor X ∧ Y differently. Any agent discovers either X or Y has been achieved

would notify the team leader. The leader synthesises all information received and notifies

other members once he believes X ∧ Y is satisfied.

5.2.7 Plan failure recovery

There is a clear distinction between the approaches of MIST and STEAM in handling

failure. In the extent of handling failure, STEAM is similar to JACKTeams. They do

71

not plan for failure. In contrast, MIST agents anticipate and form appropriate intentions

towards failure scenarios. Please refer to 5.1.4 for an example which illustrates this point.

5.2.8 Communication

The way STEAM agents reason about communication is interesting but not always feasible.

STEAM agents are integrated with decision-theoretic communication selectivity. Agents

consider communication costs, benefits in order to decide if they need to communicate.

This is an interesting approach to reduce communication overhead. However, this method

requires knowing and assigning numerical valued costs and rewards to actions and events.

This types of information might not always available and estimating them are usually very

difficult and ad-hoc.

72

Chapter 6

Conclusion

This thesis has described MIST, a framework for team-based applications. MIST is based

on SharedPlans theory which specifies the mental attitudes of agents to engage in team

activities. The SharedPlans thoery, however, does not address computational issues such as

coordination or communication. Aiming towards a flexible, general framework for practical

applications, MIST is equipped with additional components to address some computational

issues. MIST facilitates the establishment of SharedPlans and dynamic team formation.

Domain independent team coordination is handled by having agents to reason about action

dependencies. MIST tackles the issues of performance monitoring and failure recovery by

exploiting the explicit representation of success conditions in group recipes. MIST is

among several systems which strive towards flexible, general frameworks. In this thesis,

MIST has been compared with JACKTeams and STEAM. There are many distinctions

between MIST and these frameworks handle teamwork issues. Although there are things

that MIST handles better than STEAM or JACKTeams, we are not claiming that MIST

is superior to any of these systems. MIST should rather be regarded as an alternative

approach for team-based applications.

There are several issues that MIST currently does not address which could be the

subject for future work. First, MIST does not facilitate synchronisation of actions (neither

do STEAM and JACKTeams). Solutions for the synchronisation problem are dependent

73

on domains and just cannot be supported by a general framework. Second, MIST agents

do not have the ability to negotiate. Conflicts and disagreements between team members

are resolved by casting decisions from the team leader. Third, there is no concept of partial

recipe in MIST whilst it is possible to have partial recipes in SharedPlans. At the moments

all recipes are predefined; they cannot be created dynamically. It would great for agents

to have partial recipes and abilities to combine several partial recipes to a complete one.

For our future study, we would investigate possibilities of incorporating MIST agents with

abilities to tackle the above issues.

74

Bibliography

[1] The Agent Oriented Software Group. JACKTM Intelligent Agents Agent Manual,

2005. Version 5.0.

[2] The Agent Oriented Software Group. JACKTM Intelligent Agents Teams Manual,

2005. Version 5.0.

[3] M.E Bratman. What is intention? In P.R. Cohen, J. Morgan, and M.E. Pollack,

editors, Intentions in Communications. MIT Press, Cambridge, MA, 1990.

[4] M.E. Bratman, D.J. Israel, and M.E. Pollack. Plans and resource-bounded practical

reasoning. Computational Intelligence, 4(4):349–355, 1988.

[5] P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial

Intelligence, 42:213–261, 1990.

[6] P.R. Cohen and H.J Levesque. Teamwork. Nous, 25:487–512, 1991.

[7] S. Franklin and A. Graesser. Is it an agent or just a program?: A taxonomy for

autonomous agents. In J.P. Müller, M.J. Wooldridge, and N.R. Jennings, editors,

Intelligent Agents III. Springer-Verlag, Berlin, 1997.

[8] B.J. Grosz, L. Hunsberger, and S. Kraus. Planning and acting together. AI Magazine,

20(4):23–34, 1999.

[9] B.J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial

Intelligence, 86(2):269–357, 1995.

75

[10] B.J. Grosz and S. Kraus. The evolution of SharedPlans. In A.S. Rao and

M. Wooldridge, editors, Foundation and Theories of Rational Agency, pages 227–326.

1999.

[11] M. Hadad and S. Kraus. SharedPlans in electronic commerce. In M. Klusch, editor,

Intelligent Information Agents, pages 204–230. Springer-Verlag, Berlin, 1999.

[12] H. Kitano et al. The RoboCup synthetic agent challenge 97. In International Joint

Conference on Artificial Intelligence (IJCAI97), 1997.

[13] K.E. Lochbaum. A collaborative planning model of intentional structure. Computa-

tional Linguistics, 24(4):525–572, 1998.

[14] A. Lucas and S. Goss. The potential for intelligent software agents in defence simu-

lation. Technical Note 2, The Agent Oriented Software Group, Oct, 1999.

[15] C.L. Ortiz and B.J. Grosz. Interpreting information requests in context: A collabora-

tive web interface for distance learning. Autonomous Agents and Multi-Agent Systems,

5(4):429–465, 2002.

[16] M.E Pollack. Plans as complex mental attitudes. In P.R. Cohen, J. Morgan, and M.E.

Pollack, editors, Intentions in Communications. MIT Press, Cambridge, MA, 1990.

[17] A.S. Rao and M.P. Georgeff. BDI agents: From theory to practice. In Proceedings

of the First International Conference on Multi-Agent Systems (ICMAS’95), pages

312–319, 1995.

[18] M. Tambe. Agent architectures for flexible, practical teamwork. In Proceedings of the

Fourteenth National Conference on Artificial Intelligence (AAAI-97), pages 22–28,

1997.

[19] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research,

7:83–124, 1997.

76

[20] G. Tidhar. Team-oriented programming: preliminary report. Technical Note 41,

Australian Artificial Intelligence Institute, Apr, 1993.

[21] G. Tidhar. Team-oriented programming: social structures. Technical Note 47, Aus-

tralian Artificial Intelligence Institute, Sep, 1993.

[22] G. Tidhar, C. Heinze, and M. Selvestrel. Flying together: Modelling air mission

teams. Applied Intelligence, 8(3):195–218, 1998.

[23] G. Tidhar, M. Selvestrel, and C. Heinze. Modeling teams and team tactics in whole air

mission modeling. In Proceedings of the 8th international conference on Industrial and

engineering applications of artificial intelligence and expert systems, pages 373–381,

1995.

[24] E. Turban, J.E Aronson, and T.P. Liang. Decision Support Systems and Intelligent

Systems. Prentice-Hall, Upper Saddle River, NJ, Seventh edition, 2005.

[25] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The

Knowledge Engineering Review, 11:205–244, 1995.

77

