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Abstract

Automatic facial feature localization has been a long-
standing challenge in the field of computer vision for sev-
eral decades. This can be explained by the large variation
a face in an image can have due to factors such as position,
facial expression, pose, illumination, and background clut-
ter. Support Vector Machines (SVMs) have been a popular
statistical tool for facial feature detection. Traditional SVM
approaches to facial feature detection typically extract fea-
tures from images (e.g. multiband filter, SIFT features) and
learn the SVM parameters.Independentlylearning features
and SVM parameters might result in a loss of information
related to the classification process. This paper proposes
an energy-based framework tojointly perform relevant fea-
ture weighting and SVM parameter learning. Preliminary
experiments on standard face databases have shown signif-
icant improvement in speed with our approach.

1. Introduction

Detection of facial features (e.g. eyes, nose) is a neces-
sary step in a wide range of applications (e.g. face recog-
nition, face tracking). Most successful approaches to facial
feature detection frame the task as a classification or regres-
sion problem [11,14,17,18,22,31]. Traditional approaches
for classification/regression follow a two step process: (i)
extracting features, (ii) building classifiers/regressors. Per-
forming these two stepsindependentlymight result in a loss
of information relevant to the classification/regression task.

Due to its importance, feature selection has been a cen-
tral topic in a variety of fields including signal processing,
computer vision, statistics, neural networks, pattern recog-
nition, and machine learning. Traditionally, feature selec-
tion is performed independently of learning the classifier
parameters [2–6, 12, 15, 20, 23, 24, 28, 30]. This paper ex-
tends previous work on feature selection and image classifi-
cation byjointly learning optimal weighting of features (i.e.
pixels) and SVM parameters.

Figure 1 illustrates the main point of the paper. Figure 1a
displays a 17×29 rectangular patch around an eye. Fig-
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Figure 1. a)17 × 29 rectangular patch used for eye detection.
b)ROC curve of a linear SVM classifier using all pixels as fea-
tures. c)64 most discriminative pixels used by our SVM classifier
that jointly optimizes pixel weighting and SVM parameters. d)
ROC curve of the learned SVM classifier, using only64 pixels.

ure 1b plots the ROC curve of a linear SVM using all avail-
able pixels inside the patch as features. Figure 1c displays
a sparse set of 64 pixels chosen by our algorithm. These
pixels and their weights are learned jointly with the SVM
parameters. Using only64 pixels (13% of the features),
our SVM classifier produces a ROC curve (Fig. 1d) that is
almost identical to the one shown in Figure 1b (using all
pixels). Although the classification performance is not sig-
nificantly better, using only 13% of the features lead to a
dramatic increase in speed. Notably, most selected pixels
are located around the edges of the eye, which is consistent
with our intuition.

The rest of the paper is organized as follows. Sec. 2
reviews previous work on SVMs and feature extraction.
Sec. 3 derives a normalized error function to jointly learn
a parameterized kernel and the SVM parameters. Methods
for learning feature weights in the input space and kernel
space are provided in Sec. 4 and 5 respectively. Sec. 6 de-
scribes experiments on two standard face databases.
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2. Previous work

This section reviews previous work on SVMs and feature
construction for SVMs.

2.1. Support Vector Machines

Given a set of training datax1, . . . ,xn ∈ ℜd×1 (see no-
tation 1) with corresponding labelsy1, . . . , yn ∈ {−1, 1},
SVMs seek a separating hyperplane with maximum mar-
gin [26]:

maximize
w,b,M

M (1)

s.t. yi(w
T ϕ(xi) + b) ≥ M ∀i

||w||2 = 1.

Here,M is the margin,w is the normal vector of the hyper-
plane, andϕ(·) represents the mapping from the input space
to the feature space.

Let w = w/M , b = b/M , then Eq. 1 is equivalent to:

maximize
w,b

1

||w||2
(2)

s.t. yi(w
T ϕ(xi) + b) ≥ 1 ∀i.

The above is equivalent to:

minimize
w,b

1

2
||w||22 (3)

s.t. yi(w
T ϕ(xi) + b) ≥ 1 ∀i.

Using a soft-margin instead of a hard-margin, we obtain the
primal problem for SVMs:

minimize
w,b,ξ

1

2
||w||22 + C

∑

i

ξi (4)

s.t. yi(w
T ϕ(xi) + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i.

Here,{ξi}
n
1 are slack variables which allow for penalized

constraint violations. C is the parameter controlling the
trade-off between a large normalized margin and less con-
strained violations.

2.2. Feature construction in SVM

This section discusses previous work on selecting fea-
tures for SVMs.

1Bold uppercase letters denote matrices (e.g.X), bold lowercase letters
denote column vectors (e.g.x). xi represents theith column of the matrix
X. xij denotes the scalar in the rowjth and columnith of the matrixX.
xij also denotes the scalar in the rowjth of column vectorxi. Non-bold

letters represent scalar variables.||x||2 =
√

xT x designates Euclidean
norm ofx. diag(·) is the operator that extracts the diagonal of a square
matrix or constructs a diagonal matrix from a vector.

One popular technique for selecting features is RE-
LIEF [19]. RELIEF assigns the weight to a particular fea-
ture based on the differences between the feature values of
nearest neighbor pairs. Caoet al [5] further develop this
method by learning feature weights in kernel space. This
method is often done as a data processing step, independent
of classifier construction. De la Torre and Vinyals [12] learn
a subpace-parameterized Taylor series kernel expansion that
effectively weights irrelevant pixels for classification with
SVMs. Recently, there have also been several papers that
learn kernel matrices for classification [10, 16, 21]. A pop-
ular approach is to define a parameterized family of kernel
matrices and optimize the parameters to align with an ideal
kernel. Another popular approach is to determine a desired
property and learn a kernel which exhibits that property. In
these approaches, the kernel is learned independently of the
SVMs parameters. This is the key difference between our
proposed method and previous work.

To solve the problem of jointly learning the SVM param-
eters and kernel, Chapelleet al [8] and Westonet al [30]
propose a method for choosing SVM’s parameters includ-
ing the kernel parameters by minimizing the Leave-One-
Out Cross Validation (LOOCV) error. However, since the
LOOCV error cannot be expressed analytically, they in-
stead propose to minimize some differentiable functions
that are upper bounds of the LOOCV error. Mangasarian
& Wild [23] introduce a modification to the objective func-
tion of the SVMs, and performs feature selection by repeat-
edly sweeping through all features to decide weather select
or deselect a feature depending on which will decrease the
value of the objective function.

One way to select a subset of good features is to prune
away unnecessary ones. Hermes and Buhmann [15] start
by constructing a SVM classifier using all available features
and recursively remove the feature that has the least impact
on the decision function if removed. Similarly, Avidan [3]
uses a greedy sequential forward selection method to find a
subset of features and support vectors that approximate the
SVM solution obtained using all available features.

To further constraint the SVMs’ parameters, some au-
thors propose modifying the objective function of SVMs by
including regularization terms or constraints on the param-
eterw of SVMs. For example, Chanet al [6] include two
additional constraints on theL1 andL2 norms ofw in the
formulation of SVMs to achieve a sparse weight vectorw.
Stoeckel & Fung [27] add a constraint onw to have the
weight for each pixel depend not only on the pixel itself but
also on its neighbors. Dundaret al [13] add a regulariza-
tion term onw in the objective function to encourage the
decision function to produce similar results for neighbor-
ing pixels.



3. SVMs and parameterized kernels

Suppose the mapping from the input space to the fea-
ture space can be parameterized by a parameterp, i.e.
ϕ(xi) = ϕ(xi,p). We would like to find a parameter vec-
tor p and a separating hyperplane that have the largest mar-
gin. However, different values ofp correspond to different
feature spaces, and since the margins in two different fea-
ture spaces can not be directly compared, it is necessary to
considernormalized margins. Let us consider the normal-
ized margin as the ratio of the margin over the square root
of sum of squared distances (in the feature space) between
same-class data instances. In other words, the normalized
margin is defined as:

M√∑
i,j

1+yiyj

2
||ϕ(xi,p) − ϕ(xj ,p)||22

(5)

Observe that normalized margin defined above is invariant
to scale and translation in the feature space.

The problem of finding the parameterp for the mapping
and the parameters of the separating hyperplane that pro-
vides the largest normalized margin can be stated as:

maximize
w,b,M,p

M√∑
i,j

1+yiyj

2
||ϕ(xi,p) − ϕ(xj ,p)||22

(6)

s.t. yi(w
T ϕ(xi,p) + b) ≥ M ∀i

||w||2 = 1.

Recall that ifp is fixed, finding the hyperplane with maxi-
mum normalized margin is equivalent to finding the hyper-
plane that maximizes the normal marginM .

Let w = w/M , b = b/M , and let φ(p) denote∑
i,j

1+yiyj

2
||ϕ(xi,p)−ϕ(xj ,p)||22, Eq. 6 is equivalent to:

maximize
w,b,M,p

1√
φ(p)||w||2

(7)

s.t. yi(w
T ϕ(xi,p) + b) ≥ 1 ∀i.

The above is equivalent to:

minimize
w,b,p

1

2
φ(p)||w||22 (8)

s.t. yi(w
T ϕ(xi,p) + b) ≥ 1 ∀i.

Using soft-margin instead of hard-margin, we get:

minimize
w,b,p,ξ

1

2
φ(p)||w||22 + C

∑

i

ξi (9)

s.t. yi(w
T ϕ(xi,p) + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i.

Here,{ξi}
n
1 are slack variables which allow for penalized

constraint violation. C is the parameter controlling the
trade-off between having large normalized margin and hav-
ing less constraint violation.

4. Learning feature weights

Consider a mapping that assigns different weights to
different featuresϕ(xi,p) = diag(p)1/2xi, wherep =
[p1...pd]

T are the feature weights, andpi ≥ 0 ∀i. We have:

φ(p) =

d∑

k=1

pk

∑

i,j

1 + yiyj

2
(xik − xjk)2 (10)

Sinceφ(p) is homogeneous inp, we can always scalew
andp appropriately to getφ(p) = 1. Therefore Eq. (9) is
equivalent to:

minimize
w,b,p,ξ

1

2
||w||22 + C

∑

i

ξi (11)

s.t. yi(w
T diag(p)1/2xi + b) ≥ 1 − ξi ∀i

d∑

k=1

pk

∑

i,j

1 + yiyj

2
(xik − xjk)2 = 1

ξi ≥ 0 ∀i, pk ≥ 0 ∀k.

Let v = diag(p)
1

2 w and consider the functiong : ℜ ×
ℜ+ → ℜ defined by:

g(x, y) =





x2

y if y > 0

0 if y = 0, x = 0
∞ if y = 0, x 6= 0.

(12)

Eq. 11 is equivalent to:

minimize
v,b,p,ξ

1

2

∑

i

g(vi, pi) + C
∑

i

ξi (13)

s.t. yi(v
T xi + b) ≥ 1 − ξi ∀i

d∑

k=1

pk

∑

i,j

1 + yiyj

2
(xik − xjk)2 = 1

ξi ≥ 0 ∀i, pk ≥ 0 ∀k.

Sinceg(·, ·) is convex, the above optimization problem is
also convex.

5. Feature weighting in feature space

Let X ∈ ℜd×n be the training data set andX
′

∈ ℜd×m

be the testing data set. Letϕ(X) denote[ϕ(x1) . . . ϕ(xn)].
The training kernel isKtrain = ϕ(X)T ϕ(X), and the test-
ing kernel isKtest = ϕ(X

′

)T ϕ(X). SupposeKtrain =

USUT is non-singular. LetB = S−
1

2 UT , thenBT B =
Ktrain. Consider the mapping̃ϕ : ℜd → ℜn, ϕ̃(x) =
Bϕ(X)T ϕ(x). Based on these conditions, the correspond-



ing train and test kernels are:

K̃train = ϕ̃(X)T ϕ̃(X) = ϕ(X)T ϕ(X)BT Bϕ(X)T ϕ(X)

= Ktrain. (14)

K̃test = ϕ̃(X′)T ϕ̃(X) = ϕ(X′)T ϕ(X)BT Bϕ(X)T ϕ(X)

= Ktest. (15)

Thus we have defined a feature mappingϕ̃ that induces the
same training and testing kernels. Now, we can learn the
feature weights as if the training data wasBKtrain and the
testing data wasBKT

test.
If Ktrain is singular or if we want to reduce the num-

ber of dimensions of the feature space, we can takeB as

B = S
−

1

2

k UT
k . HereUk contains the firstk columns ofU

(corresponding to the largest eigenvalues ofKtrain) andSk

is the sub-matrix ofS containing the firstk columns andk
rows. In this case,̃Ktrain might not exactly matchKtrain,
but it is the bestrank-k approximation.

6. Experiments

This section compares the performance of weighted
SVMs and normal SVMs on two standard face databases.

6.1. Pose classification

We performed experiments on the CMU Face Images
Data Set from the UCI machine learning repository [1]. The
database contains 30×32 pixel facial images of 20 people
under different expressions and poses. Some examples of
faces from the database are given in Fig. 2. The classifi-
cation task was to distinguish between two different poses:
looking up and looking to the camera. Because the num-
ber of data instances in this database is small (only 312
faces), the experimental results were taken as the accuracy
of 10-fold cross validation. We constructed four different
SVM classifiers, namely linear SVM, linear weighted SVM,
Gaussian SVM, and Gaussian weighted SVM. For all clas-
sifiers, we repeated the experiments for different values of
theC parameter (andγ for Gaussian SVMs) and reported
the best results. Table 1 shows the best results from all
methods. Notably, weighted SVMs achieve similar clas-
sification accuracy while using a much smaller number of
pixels and support vectors. Fig. 3 displays the pixels se-
lected by applying our weighted SVM method.

6.2. Eye detection

Following the approach of Everingham and Zisser-
man [14], we performed eye detection experiments on the
gray-scale FERET database [25]. This database contains fa-
cial images of various subjects under different expressions
and poses. All images have a 256×384 pixel resolution and
limited lighting variation. Some images are associated with

Figure 2. Examples of faces from the CMU Face Database

Figure 3. Pixels chosen by our weighted SVM. Most chosen pixels
lie around the face region, which is the informative region about
the pose. Several pixels outside the facial region are also chosen.
This is due to noise and insufficient training data.

Figure 4. (a) Example of four landmarks used in the FERET
database. (b) Centers of negative training patches were sampled
randomly inside the cyan region. (c) Region of correct classifica-
tion, positively classified pixels were considered correct if they are
located inside the square.

a set of four hand labeled landmarks (Fig. 4a). Among the
images with labeled landmarks, we extracted all the 2963
available frontal faces for experiments. These images were
further divided into disjointed training and testing sets (60%
and 40% respectively).

For training, we first performed Procrustes analysis [9]
to align the landmarks w.r.t. the mean shape, removing ro-
tation, translation, and scale variations. Positive training
examples were obtained by sub-sampling17 × 29 patches
inside27 × 47 rectangular regions around the left iris land-
mark of every training image. Similarly, negative exam-



Table 1. Comparison of weighted SVMs and normal SVMs on the UCI CMU Face Images Data Set. The weighted SVMs (both linear and
Gaussian) achieve similar accuracy rates while using much fewer features and support vectors.

10-fold CV acc #features used #SVs
Linear Gaussian Kernel Linear Gaussian Kernel Linear Gaussian Kernel

Normal Weight Normal Weight Normal Weight Normal Weight Normal Weight Normal Weight
95.5 95.5 97.48 98.06 960 67 312 74 102 85 186 73

ples were created by extracting rectangular patches around
random points in the iris neighborhood. The neighborhood
was defined as in Fig. 4b. Each patch was normalized by
subtracting the mean intensity and dividing by the standard
deviation.

For each training image, the OpenCV Viola-Jones face
detector [29] was used to produce a square centered on the
face. A linear regression predictor was implemented to ap-
proximate the iris landmark from the position and scale of
the face detector’s output [14].

We performed experiments with two different SVM
classifiers, namely normal SVM and weighted SVM. For
weighted SVM, we first applied the method described in
Sec. 4 to learn the optimal pixel weights. Pixels with in-
significant weights (< 10−5) were discarded, and a SVM
classifier was constructed based on the remaining pixels,
taking their weights into account. Fig. 1c shows the loca-
tions of 64 pixels (out of 493) chosen by our weighted SVM
(cyan dots).

For each testing image, we used the previously learned
linear regression to produce the first approximation for the
iris’ position. A searching window was placed around this
initial guess. With a sliding window approach, the pixel
with the highest SVM decision value was chosen as the final
result for the localization of the iris.

The performance of different algorithms was evaluated
in two different ways. Figure 5 plots the localization error
threshold (x-axis) and the proportion of successful localiza-
tions within the threshold (y-axis). The Euclidean distance
from the ground truth landmark to the predicted iris location
was normalized by the inter-ocular distance (distance be-
tween the two iris landmarks) to account for different scales.
Compared with normal SVM, weighted SVM achieves sim-
ilar performance results while using a much smaller number
of pixels.

To analyze the trade-off between true detections and
false alarms, we classified all pixels inside the searching
window and produced ROC curves (Fig. 6) by varying the
threshold of the SVM classifier. The positively classified
pixels were considered correct if they fell inside a square
neighborhood around the true landmark. The size of this
neighborhood was proportional to the inter-ocular distance
of the subject (illustrated in Fig. 4c). As can be observed,
the ROC curve produced by our weighted SVM is similar
to the one produced by standard SVM. However, weighted

Figure 5. Distance threshold versus the proportion of iris localiza-
tion within the threshold. The distance is taken as the Euclidean
distance from the ground truth landmark to the predicted iris loca-
tion normalizing by the inter-ocular distance. Weighted SVM per-
forms as well as the other method while using much less pixels.
TheRegressioncurve is the result of using initial guess produced
by the linear regression predictor.

Figure 6. ROC curves of three different methods. Weighted SVM
performs as well as normal SVM while using a much smaller num-
ber of pixels.

SVM used only 13% of available pixels.
In our experiments, SVM classifiers were built using

LibSVM [7]. The C parameter of SVMs and other parame-
ters were tuned using cross validation.

7. Conclusion

In this paper, we have presented a method for jointly
performing feature extraction and building SVM classifiers.
Learning feature weights and parameters of SVM classi-
fiers is formulated as a convex optimization problem. The
method has been applied to solve two important computer



vision problems: pose classification and facial feature de-
tection. Experiments on standard face databases produce
SVM classifiers that employ sparse sets of features while
retaining classification performance.
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