DRT: A Tool for Design Recovery of Interactive Graphical Applications

http://www.cse.unsw.edu.au/~drt

Keith Chan, Annie Chen, Zhi Cong Leo Liang, Amir Michail, Minh Hoai Nguyen, Nicholas Seow
School of Computer Science and Engineering
University of New South Wales, Sydney, Australia, 2052
{kchan,anniec,leozc,amichail,mhng237,nickseow } @cse.unsw.edu.au

Abstract

Nowadays, the majority of productivity applications are
interactive and graphical in nature. In this demonstration,
we explore the possibility of taking advantage of these two
characteristics in a design recovery tool. Specifically, the
fact that an application is interactive means that we can
identify distinct execution bursts corresponding closely to
“actions” performed by the user. The fact that the appli-
cation is graphical means that we can describe those ac-
tions visually from a fragment of the application display it-
self. Combining these two ideas, we obtain an explicit map-
ping from high-level actions performed by a user (similar
to use case scenarios/specification fragments) to their low-
level implementation. This mapping can be used for design
recovery of interactive graphical applications. We demon-
strate our approach using LyX, a scientific word processor.

1 Introduction

Almost all productivity applications in use today are in-
teractive and graphical in nature. By interactive, we mean
that the application takes user input (key presses, mouse
clicks, etc.) and gives back an immediate response, then
awaits for further input, and so on. This contrasts with older
batch applications that simply take an input and terminate
with the output. By graphical, we mean that the application
shows its results in a graphical manner as with a word pro-
cessor or web browser say. Graphical applications typically
have a graphical user interface (GUI) incorporating menus
and dialog boxes to facilitate interaction.

In this formal demonstration, we show a way to take ad-
vantage of these two characteristics — namely, the interac-
tive and graphical natures of applications — in a design re-
covery tool. These two characteristics allow us to identify
the key actions that are performed by the user in a demon-

Proceedings of the 25th International Conference on Software Engineering (ICSE’03)
0270-5257/03 $17.00 © 2003 IEEE

stration of the application, much like use case scenarios, as
well as the implementations of those actions. One can then
search/browse a database of such actions and their imple-
mentations to understand the design of an application.

Intuitively speaking, an application that is interactive al-
lows us to more easily identify actions performed by a user.
Specifically, we can look for an “execution burst” that oc-
curs when the user invokes an action. Moreover, the fact
that the application is graphical gives us a way to describe
the actions identified in this manner. Namely, we can de-
scribe an action by using a screenshot of the application
display before and after the action is performed.

To illustrate our approach, we have built a tool, named
DRT (for Design Recovery Tool), that works with most
C/C++ X Window System applications irrespective of the
GUI framework used. We shall demonstrate DRT using the
scientific word processor LyX 1.2.1. LyX is a rather sub-
stantial X Window System application consisting of about
154,000 lines of C++ code.

Our approach is applicable to interactive graphical appli-
cations written in an event-driven programming style with
alternation between user-initiated events and application re-
sponses. Most productivity software including word pro-
cessors and spreadsheets is of this form. However, certain
applications such as flight simulators and games are not,
since the application proceeds even while the user is idle.

2 Searching and Browsing Actions

Given a collection of actions — done by others per-
haps — it is possible to search/browse those actions to bet-
ter understand the design of an application. Such an un-
derstanding can then be used to perform some maintenance
task.

To search an action collection, one can use a dynamic
query, which involves actually performing an action on a
running application. In particular, we would run LyX un-
der DRT and perform an action to see other similar actions

IF,F.F.

COMPUTER
SOCIETY

...(a) continued

(a) Dynamic Search

5 af
i pnwFromsiring |

Ly =Langth LyxLeG)

Mathi 5

Show that

5=]

Figure 1. Searching/browsing LyX actions.

already in the action collection. Figure 1, (a) shows such
a dynamic query where the user has entered math mode to
use the formula editor. The query action is shown at the
top followed by similar actions below ranked by similarity
to the query action. By looking at the results of this dy-
namic query, we immediately see typical interactions with
the formula editor described visually along with key func-
tions responsible for implementing those interactions.

It is also possible to search by keyword (as with the “cur-
sor down” query yielding the results in Figure 1, (b)) and to
browse similar actions (as demonstrated by clicking on the
last action in Figure 1, (a), which yields the results in the
list of similar actions in Figure 1, (c)).

3 Related Work!

There has been related research done on selective trac-
ing of atomic units of activity. For example, the drive-
by analysis approach employed in the Jinsight tool [2] al-
lows users to define their own notions of execution “burst”
by specifying triggers, filters, requested threads, and burst
ending criteria. Jinsight returns dynamic information from
the burst only, thus allowing users to prune potentially very
large amounts of trace data to only those items of interest.
We also have a notion of an execution burst in the DRT
tool, but we predefine it to automatically capture bursts that
correspond closely to the user’s notion of an action in an
interactive graphical application. While Jinsight does share
the generic idea of an execution burst with DRT, it does not
take advantage of either the interactive or graphical aspects
of applications to automatically find or describe such bursts.

However, there is an interaction-driven tool, LeNDI,
for reverse engineering legacy interfaces [1, 3] that iden-
tifies the text screens encountered while an application is
used and ways (e..g, keyboard input) for getting from one
text screen to another. Such information can be helpful in
migrating text-based legacy interfaces to newer platforms
(e.g., GUISs or the web) or perhaps wrapping them for inter-
action with other systems. While it may seem that LeNDI is
similar to DRT in the way it automatically extracts screens
and transitions between them, LeNDI actually makes no
connections to the corresponding burst code. The authors
acknowledge that LeNDI does not shed much light on the
application code [3]: “Clearly, if the end goal is to extend
or modify the system functionality by modifying its current
code, then such interaction-based understanding is insuffi-
cient because it provides only a model of the user tasks that
the system supports and it completely ignores low-level de-
sign decisions such as data structures and algorithms.”

References

[1] M. El-Ramly, P. Iglinski, E. Stroulia, P. Sorenson, and
B. Matichuk. Modeling the system-user dialog using
interaction traces. In 8th Working Conference on Re-
verse Engineering, pages 208-217,2001.

[2] W.D. Pauw, N. Mitchell, M. Robillard, G. Sevitsky, and
H. Srinivan. Drive-by analysis of running programs. In
Proceedings for of ICSE 2001 Workshop on Software
Visualization, pages 17-22, 2001.

[3] E. Stroulia, M. El-Ramly, L. Kong, P. Sorenson, and
B. Matichuk. Reverse engineering legacy interfaces:
An interaction-driven approach. In 6th Working Con-
ference on Reverse Engineering, pages 292-301, 1999,

!For more related work, see our ICSE 2003 paper “Design Recovery of
Interactive Graphical Applications” by Chan et al.

IF,F.F.

COMPUTER

Proceedings of the 25th International Conference on Software Engineering (ICSE’03)
SOCIETY

0270-5257/03 $17.00 © 2003 |EEE

