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Abstract

We present a framework that enables an object detector to self-enhance its accu-
racy while preserving its efficiency. This framework is particularly useful in settings
where a single object detector is deployed to detect objects in video streams from nu-
merous cameras. Our approach improves the object detector’s precision by adapting
it to specific scenes in a novel way that does not hinder the inference speed or over-
all system throughput. Specifically, it involves augmenting the object detector with a
mixture-of-experts structure that only moderately increases the parameter count, avoid-
ing the expense of replicating the entire model. The resulting enhanced detector operates
as a self-contained unit, facilitating an efficient client-server architecture with a shared
detection engine for multiple video streams. Our framework supports self-supervised
learning, eliminating the reliance on manually annotated data, and it is compatible with
various established object detector architectures. Experiments on the Scenes100 dataset
demonstrate the wide applicability and effectiveness of our method in enhancing detec-
tion precision while maintaining operational efficiency. Our code is available at https:
//github.com/cvlab-stonybrook/scenes100/tree/main/moe.

1 Introduction
Real-time object detection in video feeds is critical for various computer vision applications,
including anomaly detection in security systems, obstruction spotting on railway lines, and
vehicle detection for traffic monitoring. While detection accuracy is critical for these ap-
plications to function correctly, one also needs to be mindful of the required computational
resources so that the costs do not outweigh the benefits. Optimizing for detection accuracy
within computational resource constraints is challenging. Smaller and quantized networks
require less computation and can reduce cost. However, they also have limited represen-
tation capacity and generalization ability. This issue becomes even more pronounced when
analyzing video streams from multiple scenes with a single detector, as these scenes can vary
greatly in perspective, lighting, and appearance. One approach to address the limited capac-
ity challenge is using a set of scene-specific detectors over a single scene-generic detector.
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Figure 1: The centralized model serving architecture and two scene adaptation approaches. (a) The centralized
model serving architecture involves hosting a detector on a centralized server that serves multiple video streams.
This setup is preferred for cost efficiency in scenarios with many video streams. (b) The conventional adaptation
approach, generating a separate model copy for each scene, significantly increases memory usage and decreases
processing throughput. (c) The proposed sparse mixture-of-experts (MoE) approach with a budget of B. At each
branching point, a similarity-based gating module routes the image to an expert. This method preserves the com-
putational cost per image of the base model. The increase in the number of parameters is only sublinear relative
to the number of scenes. The maximum number of video streams that can be supported depends solely on the
computational speed of the inference hardware.

Since each detector is dedicated to a particular scene, the detection accuracy can be poten-
tially improved. However, the naive method [89] of training a separate detector for each
scene still requires a multiplied amount of labeled training data. It also prevents the use of
efficient model serving architectures with a shared inference engine [18, 19, 20, 53, 57, 67].
Each detector would be tied to a separate inference engine and consume a portion of the
memory, as shown in Figure 1a. Consequently, the number of video streams that can be
processed simultaneously by the same inference hardware is limited by the total available
memory, thereby reducing the system’s throughput and increasing the total cost.

In this paper, we address the challenge of adapting a base object detector to diverse
scenes, with the aim of improving detection precision while preserving inference speed and
system throughput. Our method begins with the network architecture of a base detector,
which we enhance with a sparse mixture-of-experts structure. In contrast to the significant
overhead of replicating the entire model, only a small number of parameters are added. This
enhanced detector operates as a single entity, enabling an efficient client-server architecture
with a shared inference engine for multiple video streams. It is capable of adapting to diverse
scenes via self-supervised learning, eliminating the need for manual annotation. This frame-
work is compatible with various object detector architectures, including Faster-RCNN [73],
YOLOv8s [42], and DINO-5scale [88]. Our experiments on a scene-adaptive object de-
tection dataset [89] demonstrate that our proposed method substantially surpasses existing
models, delivering improved detection accuracy while maintaining runtime efficiency.

Note that our focus is to enhance the detector deployed on a centralized processing server.
Centralized AI processing has many benefits compared to distributed setups in scenarios with
numerous video streams, even with the increasing prevalence of AI cameras [26, 62, 68].
AI-enabled cameras require expensive processing chips, and the model is hard to update.
In contrast, a centralized processing server can support many cheaper, regular cameras, and
updating a centralized detection model is relatively easier.

2 Related Work
Model efficiency is a key consideration of our work. Various approaches can improve effi-
ciency, including designing efficient architectures [35, 37, 39, 79], neural architecture search-
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ing [22], quantizing the parameters [27], and pruning network parameters [5]. Our proposed
method complements these approaches and can be applied to various network architectures,
including those that are optimized, quantized, or pruned. Recently LoRA [1, 36, 92, 93] has
been utilized to fine-tune trained models for new tasks with reduced memory usage. Our pro-
posed method has the advantage of not increasing memory costs as the number of adapted
scenes grows. Additionally, LoRA can be integrated as a plugin if memory consumption
remains a concern after implementing our method.
Scene-adaptive object detection is the main objective of our work, which is considered
in [89] as the task to improve the detection precision of a trained base detector on video
streams from a set of diverse scene cameras, addressing the domain shift problems typically
encountered by any pre-trained object detector, e.g., [34, 63, 64, 65, 66]. It is closely related
to domain-adaptive object detection [15, 17, 32, 38, 40, 43, 45, 46, 47, 48, 52, 61, 74, 75, 78,
85, 86, 87, 90]. Most existing methods do not take efficiency into consideration, thus often
result in increased computational demands. Our approach is designed with computational
resource limitations and scalability in mind while still outperforming methods that solely
concentrate on improving detection accuracy.
Mixture-of-experts (MoE) [2, 11, 16, 21, 24, 77, 84] is the network architecture utilized
by the proposed method to achieve both efficiency and scene-adaptability. An MoE model
contains a set of experts, and a gating module activates a subset of the experts according
to each input sample. We show that only a small portion of a detector network is scene-
specific and needs to be converted to MoE, greatly reducing the parameter count. Our gating
module is sparse and only activates one expert for each input image, so the computational
cost for both training and inference is the same as the non-MoE base model. We also apply
a two-stage training schedule to mitigate the overfitting issue caused by MoE and gating.
Knowledge distillation is the primary technique used by the proposed framework to actuate
scene-adaptation training. It was originally proposed [33] to transfer the learned informa-
tion from a teacher network to another student network. Self-distillation refers to the case
when the teacher and student have the same architecture, and it achieves remarkable results
in self-supervised vision representation learning [8, 12, 13, 14, 31, 58]. Many of such frame-
works apply the idea of contrastive learning, which involves different data augmentations on
the input of the teacher and the student. In our proposed self-supervised adaptation method,
the teacher and the student also have identical architectures and weights at the beginning of
training. We apply upscaling as the data augmentation for the teacher. Comparable methods
are used in self-supervised domain-adaptive object detectors [10, 17, 45, 48, 91]. Our pro-
posed method does not require complicated data augmentation methods, nor careful tuning
of the hyper-parameters. Yet, it still achieves a significantly higher detection precision boost.
Self-distillation methods can suffer from model collapse, which requires special treatments
such as negative pair sampling, regularization, or diversity enforcement. We avoid this issue
by not updating the teacher during training.

3 Efficiency-Preserving Scene Adaptation
This section describes our proposed framework which enhances an object detector with the
capability of self-adapting to many different scenes while also preserving its suitability as the
core component of a shared inference engine for all scenes. It utilizes a sparse mixture-of-
experts (MoE) strategy, which assigns each video stream to its corresponding route within the
model to improve adaptability. Only one expert is activated for each input image. It ensures
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that the model has enough capacity for scene-specific adaptation to improve its precision,
while maintaining both the processing latency and the throughput of the inference engine.
Problem definition. Given a base detectorM, which is the core component of an inference
engine that processes multiple camera streams from diverse scenes, instead of creating a sep-
arate model for each scene which linearly increases the overall parameter count, we aim to
obtain an enhanced modelM∗ to replaceM, while ensuring the following characteristics.
(1) Improved precision: M∗ should have the capacity to adapt to different scenes, thereby
providing improved detection precision overM. (2) Consistent latency and throughput:
On the same inference hardware, the timeM∗ takes to process each image should be equiv-
alent to that ofM. M∗ should also matchM in its ability to process the same number of
video streams at an identical frame rate. (3) Memory efficiency: The parameter count for
M∗ must not be excessively large, even with a large number of scenes, ensuring that it can
operate on the existing inference hardware without the need for additional memory. And
(4) Self-supervised learning: M∗ should adapt to the scenes and through self-supervised
learning, eliminating the necessity for manually-labeled data or human oversight.

3.1 Architecture of Enhanced Model
To design a detector with the aforementioned characteristics, we divide the detector’s mod-
ules into scene-generic and scene-specific ones. Scene-generic modules are shared by all
scenes, while each scene-specific module only adapts to a subset of scenes. This enables
the model to adapt to diverse scenes while scaling sublinearly with the number of scenes. It
allows for serving as many concurrent video streams as possible, limited only by the compu-
tational speed capacity of the inference hardware and not by additional memory constraints.

Most of the existing object detection architectures [6, 7, 9, 28, 29, 41, 42, 44, 50, 51, 70,
71, 72, 73, 83] are composed of two primary components: (1) a feature extractor network that
generates feature maps from images, and (2) a detection head for localization and category
classification of object instances. For a collection of diverse scenes, it is apparent that the
most significant differences between them are object sizes, camera perspectives, and lighting
conditions. Consequently, the most appropriate layers for scene-specific adaptation are those
closest to the input or output. In particular, the initial layers of the feature extractor play a
pivotal role in adjusting to geometric and lighting variations, and the terminal layers of the
head are crucial for finalizing the detector’s judgments. The intermediary layers, which deal
more with abstract visual representation and semantics, tend to differ less across different
scenes. This division is shown in Figure 1b. These scene-specific modules usually comprise
only a few percent of the network’s total parameters. In §4.3 we show that using scene-
specific modules benefits scene-adaptation.

We enhance the base detector by selectively duplicating these scene-specific modules,
as illustrated in Figure 1c. Let |M| be the parameter count of the original model, α the
parameter proportion of scene-specific modules, and each of the scene-specific modules is
duplicated for B times. B can be smaller than the number of scenes N, as a single module can
still adapt to multiple similar video streams adequately. The parameter count of the enhanced
MoE model is: |M∗|= (1+α(B−1))|M|, which is significantly smaller than B|M|.

The processing path for each input image in the MoE modelM∗ depends on the unique
scene ID indicating the camera from which the image originates. At each branching junction
withinM∗, a gating module determines the image’s route based on its scene ID. This sparse
mixture-of-experts approach ensures that, despite the branching, the computational cost for
processing one image remains unchanged from the base detectorM. In this paper, we apply
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Algorithm 1: Similarity-based gating (B-Means)
Input: N video streams and a feature extractor F
Parameters: Branching budget B and the number of samples per scene M
Output: Branch assignments for each scene a1, . . . ,aN , where 1≤ ai ≤ B

1 Sample M frames from each of N scenes: {Xi j|1≤ i≤ N,1≤ j ≤M}.
2 Extract feature vectors: fi j← F(Xi j).
3 Run k-means on { fi j} with k = B, get the cluster assignments {ki j}.
4 Assign branch IDs to scenes using voting: ai← argmax1≤k≤B ∑

M
j=1 δ (ki j = k).

consistent gating rules across all gating modules inM∗. This means the number of parallel
modules at each branching point equals B, resulting in a total of B distinct paths in M∗.
It is feasible to vary the number of branches at different branching points and combine a
branch from one point with an arbitrary one from another, yielding a combinatorial number
of pathways. We reserve such considerations for future work.

3.2 Similarity-Based Gating
The MoE detectorM∗ is designed to handle B distinct processing paths. B is a hyperparam-
eter adjusted for system memory constraints. When memory is very limited, we can set B=1,
effectively adapting a single model to all scenes. Conversely, with more memory, B could
match the total number of scenes N, though it is commonly unnecessary. When 1 < B < N,
effective scene-to-branch assignment is crucial. As random allocation can be suboptimal,
we propose a data-driven clustering strategy to assign similar scenes to the same branch. M
images are sampled from each of the N scenes to compile a representative set on which the
grouping is based on. A feature extractor F then calculates an image-level feature vector
for every image. k-means clustering is performed on the feature vector set. Then, for every
scene, we evaluate the cluster IDs assigned to its sample images and select the one for the
entire scene using majority voting. This algorithm for scene-to-branch assignment, named
B-Means, is outlined in Algorithm 1. It is desirable to use a feature extractor F that al-
ready demonstrates effective object detection performance. In our experiments, we take the
backbone of the warmed up model described in §3.3 as F . In §4.3 we verify that B-Means
improves performance over random allocation.

3.3 Training for Adaptation
Adapting the MoE detector to different scenes requires images from those scenes with cor-
responding training signals to update the parameters of the base detector. The images are al-
ready produced by the cameras, and various strategies can be used to generate self-supervised
pseudo annotation. For instance, tracking [3, 4, 23, 54, 55, 56, 76] aids in identifying
missed detections, as enforcing temporal persistence reduces false positives. Model ensem-
bles [25, 59] enhance accuracy but demand more computational power. Alternatively, input
data augmentation [60, 69] transforms the original image into variants, each analyzed by the

warmed up
modeltrain on

Sw samples

base model

MoE model

... ...

train on
S-Sw samples

MoE model

... ...

MoE model

... ...

train on
S samples

MoE model

... ...

Figure 2: Two-stage (bottom) compared with one-stage (top) train-
ing schedule. With the same total of S training samples, the model
is first trained on Sw samples without branching to obtain the
warmed up single model. Then, it is enhanced with MoE branching
and further training on S− Sw samples. Two-stage training miti-
gates the overfitting issue brought by MoE and gating.

Citation
Citation
{Bao, Wu, Ling, and Ji} 2012

Citation
Citation
{Bhat, Danelljan, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Timofte} 2019

Citation
Citation
{Fan, Lin, Yang, Chu, Deng, Yu, Bai, Xu, Liao, and Ling} 2019

Citation
Citation
{Mayer, Danelljan, Paniprotect unhbox voidb@x protect penalty @M  {}Paudel, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2021

Citation
Citation
{Mayer, Danelljan, Bhat, Paul, Paudel, Yu, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2022

Citation
Citation
{Mei and Ling} 2009

Citation
Citation
{Sevilla-Lara and Learned-Miller} 2012

Citation
Citation
{Ganaie, Hu, Malik, Tanveer, and Suganthan} 2022

Citation
Citation
{Mohammed and Kora} 2023

Citation
Citation
{Mumuni and Mumuni} 2022

Citation
Citation
{Perez and Wang} 2017



6 ZHANG, ET AL.: EFFICIENCY-PRESERVING SCENE-ADAPTIVE OBJECT DETECTION

Model Backbone COCO Scenes100
Faster-RCNN [73] R-101 52.77 41.96
Faster-RCNN [73] R-18 46.96 35.68
YOLOv8s [42] D-53 48.61 44.10
DINO-5scale [88] R-50 54.65 40.54

Table 1: Mean Average Precision (APm) of base models on
COCO2017-val [49] and Scenes100 [89]. Models are trained
on COCO2017 training set with remapped object classes. R-
101, R-50, R-18, and D-53 stand for ResNet-101, ResNet-50,
ResNet-18, and CSPDarkNet-53 backbones, respectively.

base detection model. The aggregated results from all variants can be used as the pseudo
annotation. Employing tracking, model ensembles, and input augmentation individually or
in combination could likely yield more reliable labels than the base detector’s outputs.

However, determining the optimal pseudo label generation method is not the primary
focus of this work. We show that for several state-of-the-art detectors, self-distillation can
significantly increase the precision of the MoE model. The base model serves as the teacher
network, and the adapted MoE model is the student. Teacher and student networks have the
same parameters at the beginning of adaptation training, while the input of the teacher is
augmented by bilinear upscaling. Upscaling greatly improves the detection precision of the
base model, likely because in the tested dataset, the object is considerably smaller than the
dataset on which the base models are trained, and upscaling narrows this data distribution
gap. Pseudo labels for training the student network can be generated by keeping detected
objects from the teacher with confidence scores above a threshold θ . Please note that the
input images of the student network keep their original size to preserve runtime efficiency.
We avoid the model collapse issue of self-distillation by not updating the teacher during
training, which is shown to be beneficial by experiments in the supplementary material. In
the supplementary material, we also examine the effectiveness of our method with pseudo
labels generated through tracking and model ensembles [89].

Branching certain modules of a model can enhance its ability to adapt to diverse scenes,
but it also potentially causes overfitting. In the vanilla model, every parameter is exposed
to all the training samples. In contrast, with the same number of training samples, each
training sample follows only one path during training in an enhanced MoE model, resulting
in each of the parallel modules being exposed to far fewer samples. We propose a two-
stage training schedule for the MoE model. The first stage involves training a vanilla model
without branching on samples from all scenes, producing the so-called “warmed up” model.
In the second stage, this warmed up model is enhanced with MoE and further trained with
gating on the remaining samples. This two-stage training schedule is depicted in Figure 2. In
§4.3, we show that two-stage training results in higher detection performance over one-stage
training while using the same number of total training samples.

4 Experiments
This section describes our extensive experiments, starting with the dataset, implementation
details, and baselines. Afterwards, it compares the performance of the proposed method with
the baselines in terms of both precision and efficiency.

4.1 Dataset, Evaluation Metrics, and Baselines

We use Scenes100 [89] for the experiments. It is the only publicly available dataset with a
sufficient number of lengthy videos and ample bounding boxes for scene-adaptive detection
research. Following [89], we evaluate a detector’s precision by calculating the per-class mean
Average Precision score across different IoU thresholds from 0.5 to 0.95 (APm), and then
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averaged weighted by the prevalence of the instances of each class. Adaptation starts from
the two-class base detector in [89], which is trained on COCO2017 [49] training set with
remapped object classes person and vehicle. Most of the baseline methods aim to achieve
high detection accuracy without considering efficiency, so they are based on bigger models
such as Faster-RCNN [73] with a large backbone. In the experiments, for comparison with
baseline methods, we use base Faster-RCNN models on ResNet-101 [30] backbone and use
the weights provided in [89]. We test the proposed method on several other object detector
architectures, including Faster-RCNN with a smaller ResNet-18 backbone, the lightweighted
YOLOv8s [42], and a transformer-baed DINO-5scale [88]. For the base models of these
architectures, we train them using the same protocol on COCO2017 until convergence.

Table 1 shows the APm scores of the base detectors on both the COCO2017 validation set
and Scenes100. For Faster-RCNN models, the larger R-101 backbone enables significantly
better performance on COCO2017. YOLOv8s is considerately smaller, thus achieving APm

more comparable to the smaller R-18 backbone. DINO-5scale, being the most computation-
ally heavy, also achieves the highest APm. When comparing the performance on COCO2017
and Scenes100, Faster-RCNN and DINO-5scale models see a APm drop of more than 10
points. But APm of YOLOv8s only drops about 4 points. This is likely because the ob-
jects in Scenes100 are considerably smaller in scale compared to COCO2017. YOLOv8s
is more accurate at detecting smaller objects, making it less prone to the data distribution
shift. This also implies that YOLOv8s might see less improvement in detection precision
from upscaling-based self-distillation discussed in §3.3.

In adaptation training, we apply×2 upscaling and score thresholding as described in §3.3
to generate pseudo labels. We use the corresponding standard loss functions for each detector
architecture. The efficiency of models is measured using relative inference latency, with the
reference being the base Faster-RCNN with R-101 backbone. More details on upscaling,
thresholding, training schedules, hardware configuration, absolute latency measures, and
experiments using different batch sizes can be found in the supplementary material.

We compare our proposed framework with several domain-adaptive and scene-adaptive
object detection methods as follows. Self-Train (ST) [74] uses detection and tracking to ob-
tain pseudo bounding boxes, referred to as DtTr, for self-supervised adaptation. Cross-Teach
(CT) [89] further utilizes an ensemble of base detectors, and we refer to these pseudo labels
as EnDtTr. Mid-Fusion with location-aware Mixup (MFM) [89] exploits scene consistency
from fixed scene cameras by modeling the background as an additional input modality and
applies artifact-free object mixup for data augmentation. We directly use the APm numbers
reported in the original paper for comparison. Geometric Shift (GS) [82] aims to correct the
distortion from the camera perspective by learning a set of homography transforms. Learn-
ing to Zoom and Unzoom (LZU) [80, 81] is a differentiable plugin designed to zoom in on
specific parts of the input image. LODS [45] is a source-free domain-adaptive object detec-
tion method in which a teacher network generates pseudo labels to train the student network.
Details of the implementation of the baselines can be found in the supplementary material.
Other baselines [48, 78, 86, 90] are shown to perform poorly on Scenes100 by [89], so we
do not include results from them.

4.2 Comparison of Precision and Efficiency
We first compare the proposed adaptation method with the baseline methods in Table 2a. All
models are adapted from the same Faster-RCNN R-101 base model for fair comparison. ST
is trained on DtTr labels. CT, MFM, GS, and LZU are all trained on the same EnDtTr pseudo
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Method Pseudo Training Deployment GFLOPs ↓ Relative APm ↑label samples ↓ model size ↓ latency ↓
Base model (no adaptation) Not applicable 230MB 558 1.00 41.96
ST [74] DtTr 8.00M 230MB×100 558 1.00 43.35
CT [89] EnDtTr 8.00M 230MB×100 558 1.00 43.63
MFM [89] EnDtTr 8.00M 230MB×100 987 1.75 45.74
GS [82] EnDtTr 8.00M 231MB×100 1440 2.71 44.06
LZU [81] EnDtTr 8.00M 230MB×100 558 1.20 44.06
LODS [45] teacher 0.10M 230MB×100 558 1.00 42.98
Proposed (B=10) ×2 1.08M 259MB 558 1.01 50.27
Proposed (B=100) ×2 1.08M 547MB 558 1.00 50.39

(a) Comparison of the proposed method with other adaptation methods. All models are trained using the same Faster-RCNN base
model with an R-101 backbone. The proposed models with B=10 and B=100 perform similarly, outperforming other methods by a
wide margin. It does not increase computational costs or consume significantly more memory, as some baselines do.

Base model Method Pseudo Training Deployment GFLOPs ↓ Relative APDm ↑label samples ↓ model size ↓ latency ↓
1-for-100 ×2 1.08M 230MB 558 1.00 0

Faster-RCNN 1-for-100 (no adapt) Not applicable 230MB 558 1.00 −7.70
with R-101 1-for-1×100 ×2 1.08M 230MB×100 558 1.00 0.42
backbone Proposed (B=10) ×2 1.08M 259MB 558 1.01 0.61

Proposed (B=100) ×2 1.08M 547MB 558 1.00 0.73
1-for-100 ×2 1.08M 107MB 310 0.54 0

Faster-RCNN 1-for-100 (no adapt) Not applicable 107MB 310 0.54 −8.96
with R-18 1-for-1×100 ×2 1.08M 107MB×100 310 0.54 0.37
backbone Proposed (B=10) ×2 1.08M 134MB 310 0.54 0.90

Proposed (B=100) ×2 1.08M 397MB 310 0.54 0.69
1-for-100 ×2 0.95M 43MB 73 0.22 0

YOLOv8s 1-for-100 (no adapt) Not applicable 43MB 73 0.22 −1.63
with D-53 1-for-1×100 ×2 0.95M 43MB×100 73 0.22 0.98
backbone Proposed (B=10) ×2 0.95M 55MB 73 0.23 0.73

Proposed (B=100) ×2 0.95M 174MB 73 0.24 0.75
1-for-100 ×2 0.02M 181MB 1620 5.58 0

DINO-5scale 1-for-100 (no adapt) Not applicable 181MB 1620 5.58 −8.96
with R-50 1-for-1×100 ×2 0.02M 181MB×100 1620 5.58 1.34
backbone Proposed (B=10) ×2 0.02M 198MB 1620 5.71 2.45

Proposed (B=100) ×2 0.02M 373MB 1620 5.85 1.95
(b) Comparison of the proposed method with the baselines of adapting a single generic 1-for-100 model to all scenes and cre-
ating a scene-specific 1-for-1 model for each scene for adaptation. State-of-the-art detector architectures (Faster-RCNN [73],
YOLOv8s [42], and DINO-5scale [88]) are tested. APDm represents the difference in mean average precision compared to adapted
1-for-100 model with the same detector architecture. The proposed method achieves similar or better performance compared to
1-for-1×100 models, while consuming significantly less memory and maintaining the same computational cost as the base model.

Table 2: Comparison of different adaptation methods in terms of detection performance on Scenes100 [89] and
computational cost in terms of giga floating-point operations (GFLOPs) and inference latency. Pseudo label column
shows the labels used in adaptation, being either DtTr from [74], EnDtTr from [89], teacher labels from a teacher
network, or ×2 meaning using upscaled image for the base model to generate pseudo labels for self-adaptation. All
models take images without upscaling at inference time. Training samples column shows the total number of images
seen by the models during adaptation. It is the sum of all individual models in the case of individual adaptation.
Please refer to §4.1 and §4.2 for more details on evaluation metrics, latency measurement, and input scale.

labels. ST, CT, and LODS cannot effectively improve the detection precision over the base
model. GS and LZU both utilize geometric transforms, so the performance is higher. MFM
introduces background extraction and mixup, which significantly improve the performance.
The proposed B=10 model uses two-stage training with B-Means, and the B=100 model uses
two-stage training with 1-to-1 gating. Both models achieve similar detection precision after
adaptation, which is significantly higher than all baselines. All the baseline methods adapt
to individual scenes by creating a separate model for each scene (1-for-1 approach). This
strategy results in significant memory consumption and requires a large number of training
samples (except for LODS) for each model to achieve convergence. In contrast, the proposed
method, being both data and computation efficient, has a significantly smaller overall model
size, requiring much fewer training samples. At inference time, MFM uses two backbone
passes. GS and LZU introduce additional geometrical transforms or backbone passes. The
increased computational cost is reflected in increased GFLOPs and latency. The proposed
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Figure 3: APm and latency of B=10 MoE models for different detector architectures at different input scales. The
size of each model is indicated by the area of the corresponding circle. Sub-figures show the same limits for the
vertical axis (APm) but different limits for the horizontal axis (relative inference latency). For all architectures,
our framework can improve the base models in detection precision and efficiency at the same time, while keeping
similar memory consumption.

method can maintain the computational cost of the base model.
The adaptation performance and computational cost of the proposed method on different

detector architectures are compared in Table 2b. We compare with the case when we use
a single generic model to adapt to all 100 scenes (1-for-100). We calculate the difference
between detection APm values of an adapted model with this model, which we refer to as
APDm. We also compare the adaptation performance of using 100 scene-specific 1-for-1
models to adapt to each scene, which can be executed when computational resources are
unlimited. For a fair comparison, we also apply the two-stage training schedule for 1-for-1
models. Since different architectures have very different base model performances (Table 1),
the comparison is only meaningful among the models adapted from the same base model.

We again verify that the proposed MoE models do not incur additional neural computa-
tion. They have the same GFLOPs and nearly identical inference latency as the correspond-
ing base model, regardless of B. The gating module introduces minimal overhead. Since only
a small portion of the network parameters are enhanced, the MoE models are only moder-
ately larger than the base models, resulting in a modest increase in memory consumption at
inference time. Though scene-specific 1-for-1 models do not introduce additional computa-
tional cost either, for the inference engine to serve all the scenes simultaneously, it needs to
host all 100 copies of the network in memory, which is impractical.

When comparing the effectiveness of adaptation, our proposed framework can produce
an MoE model with precision similar to or even higher than the scene-specific 1-for-1 mod-
els. For Faster-RCNN and DINO-5scale, the proposed model outperforms 1-for-1 models.
This suggests that larger models are more prone to overfitting, so sharing certain network pa-
rameters among different scenes can be beneficial. In Figure 3, we visually demonstrate that
the proposed method can obtain models that have increased detection precision over the base
model while maintaining the computation cost. We can further reduce the latency by using
downscaled input images for the adapted MoE models. Consequently, the models can still
obtain improved or similar detection precision over the base models with reduced latency.

4.3 Ablation Study

The proposed method converts initial and terminal layers to MoE as described in §3.1, which
we claim to be beneficial for scene-specific adaptation and is shown to outperform the single
1-for-100 model. Here, we instead use intermediate layers to enhance with MoE. For a fair
comparison, we keep the number of parameters of the converted intermediate layer similar to



10 ZHANG, ET AL.: EFFICIENCY-PRESERVING SCENE-ADAPTIVE OBJECT DETECTION

100K 180K
training iterations (K=103)

44.0

44.5

45.0

45.5
AP

m
1-for-100
B=10, init. & term. MoE
B=100, init. & term. MoE
B=10, intermediate MoE
B=100, intermediate MoE

(a) MoE layers

100K 180K
training iterations (K=103)

44.0

44.5

45.0

45.5

AP
m

1-for-100
B=10, 2-stage, B-Means
B=100, 2-stage, 1-1 gating
B=10, 1-stage, B-Means
B=100, 1-stage, 1-1 gating

(b) Schedules

100K 180K
training iterations (K=103)

44.0

44.5

45.0

45.5

AP
m

1-for-100
B=10, 2-stage, B-Means
B=10, 2-stage, random gating
B=10, 1-stage, B-Means
B=10, 1-stage, random gating

(c) Gating strategies

Figure 4: Ablation study on different MoE layers, training schedules, and gating strategies. All models are based
on Faster-RCNN with R-18 backbone, trained with the same batch size and learning rate. APm at training iterations
100,000 and 180,000 are shown. All two-stage trained models start from the warmed up 1-for-100 model at iteration
100,000. In (a) B=10 models use B-Means gating and B=100 models use 1-to-1 gating. In (b) and (c), all B=10 and
B=100 models use proposed MoE layers enhancement. The proposed MoE layers, two-stage training schedule, and
the B-Means gating strategy are all beneficial over other alternatives.

the proposed method, all models start from the same warmed up model, and all use the same
gating strategy. The adaptation performance is compared in Figure 4a. It is clear that unlike
the proposed method, using intermediate layers for MoE does not provide much performance
gain over the non-MoE 1-for-100 model.

We also conduct experiments using the one-stage training schedule, where the MoE
model is constructed, and the gating rules are determined from the base model without warm-
up. These results are shown in Figure 4b. It is evident that if the model is branched directly
from the base model without a warm-up phase, B=10 and B=100 models actually underper-
form compared to the generic 1-for-100 adaptation model, suggesting overfitting. Two-stage
training results in improved performance with the same number of training samples.

We further compare different gating strategies of B=10 MoE models. One utilizes the
proposed B-Means gating, and the other adopts a random gating strategy where an MoE
branch is randomly assigned to each scene. The results are presented in Figure 4c. Only the
B-Means approach achieves an APm comparable to that of the B=100 models (as reported in
Table 2b), demonstrating the effectiveness of grouping similar scenes into the same branch.
Even for one-stage trained models, B-Means is beneficial over random gating.

5 Summary

We have presented a novel framework that adapts a base object detector to video streams
from various scene cameras without affecting inference speed or system throughput. By
incorporating a mixture-of-experts structure into the base network’s architecture, we have
achieved an enhanced network that preserves inference latency and memory usage. This ar-
chitecture can be trained with pseudo labels generated by the base detector itself, enabling
self-supervised learning and eliminating the need for human supervision during the adap-
tation process. Additionally, using downscaled input images with the mixture-of-experts
model can improve precision and reduce latency, thus optimizing both critical objectives si-
multaneously. Our approach has been tested across various state-of-the-art detection network
architectures, outperforming the baselines in detection precision, memory consumption, in-
ference latency, and data efficiency.
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